• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Makine Mühendisliği Bölümü / Department of Mechanical Engineering
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Makine Mühendisliği Bölümü / Department of Mechanical Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of a biomass-based power and fresh water-generation system by machine learning using thermoeconomic assessment

Thumbnail
View/Open
Optimization of a biomass-based power and fresh water-generation system by machine learning using thermoeconomic assessment-.pdf (4.765Mb)
Date
2024
Author
Parnian Gharamaleki, Fatemeh
Sharafi Laleh, Shayan
Ghasemzadeh, Nima
Soltani, Saeed
Rosen, Marc A.
Metadata
Show full item record
Abstract
Biomass is a viable and accessible source of energy that can help address the problem of energy shortages in rural and remote areas. Another important issue for societies today is the lack of clean water, especially in places with high populations and low rainfall. To address both of these concerns, a sustainable biomass-fueled power cycle integrated with a double-stage reverse osmosis water-desalination unit has been designed. The double-stage reverse osmosis system is provided by the 20% of generated power from the bottoming cycles and this allocation can be altered based on the needs for freshwater or power. This system is assessed from energy, exergy, thermoeconomic, and environmental perspectives, and two distinct multi-objective optimization scenarios are applied featuring various objective functions. The considered parameters for this assessment are gas turbine inlet temperature, compressor’s pressure ratio, and cold end temperature differences in heat exchangers 2 and 3. In the first optimization scenario, considering the pollution index, the total unit cost of exergy products, and exergy efficiency as objective functions, the optimal values are, respectively, identified as 0.7644 kg/kWh, 32.7 USD/GJ, and 44%. Conversely, in the second optimization scenario, featuring the emission index, total unit cost of exergy products, and output net power as objective functions, the optimal values are 0.7684 kg/kWh, 27.82 USD/GJ, and 2615.9 kW.
URI
http://hdl.handle.net/20.500.12566/2344
Collections
  • Makine Mühendisliği Bölümü / Department of Mechanical Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.