Basit öğe kaydını göster

dc.contributor.authorParnian Gharamaleki, Fatemeh
dc.contributor.authorSharafi Laleh, Shayan
dc.contributor.authorGhasemzadeh, Nima
dc.contributor.authorSoltani, Saeed
dc.contributor.authorRosen, Marc A.
dc.date.accessioned2025-11-17T08:15:56Z
dc.date.available2025-11-17T08:15:56Z
dc.date.issued2024
dc.identifier.citationParnian Gharamaleki, F., Sharafi Laleh, S., Ghasemzadeh, N., Soltani, S., & Rosen, M. A. (2024). Optimization of a biomass-based power and fresh water-generation system by machine learning using thermoeconomic assessment. Sustainability, 16, 8956.en_US
dc.identifier.issn2071-1050
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2344
dc.description.abstractBiomass is a viable and accessible source of energy that can help address the problem of energy shortages in rural and remote areas. Another important issue for societies today is the lack of clean water, especially in places with high populations and low rainfall. To address both of these concerns, a sustainable biomass-fueled power cycle integrated with a double-stage reverse osmosis water-desalination unit has been designed. The double-stage reverse osmosis system is provided by the 20% of generated power from the bottoming cycles and this allocation can be altered based on the needs for freshwater or power. This system is assessed from energy, exergy, thermoeconomic, and environmental perspectives, and two distinct multi-objective optimization scenarios are applied featuring various objective functions. The considered parameters for this assessment are gas turbine inlet temperature, compressor’s pressure ratio, and cold end temperature differences in heat exchangers 2 and 3. In the first optimization scenario, considering the pollution index, the total unit cost of exergy products, and exergy efficiency as objective functions, the optimal values are, respectively, identified as 0.7644 kg/kWh, 32.7 USD/GJ, and 44%. Conversely, in the second optimization scenario, featuring the emission index, total unit cost of exergy products, and output net power as objective functions, the optimal values are 0.7684 kg/kWh, 27.82 USD/GJ, and 2615.9 kW.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherSustainabilityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiomass gasificationen_US
dc.subjectBiyokütle gazlaştırmatr_TR
dc.subjectReverse osmosisen_US
dc.subjectTers ozmoztr_TR
dc.subjectThermoeconomicen_US
dc.subjectTermoekonomiktr_TR
dc.subjectGrey wolf optimizationen_US
dc.subjectGri kurt optimizasyonutr_TR
dc.titleOptimization of a biomass-based power and fresh water-generation system by machine learning using thermoeconomic assessmenten_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:001341401100001
dc.identifier.scopus2-s2.0-85207346049
dc.identifier.volume16
dc.identifier.issue20
dc.identifier.startpage1
dc.identifier.endpage24
dc.contributor.orcid0000-0002-9862-0253 [Soltani, Saeed]en_US
dc.contributor.abuauthorSoltani, Saeed
dc.contributor.ScopusAuthorID56379837900 [soltani, saeed]
dc.identifier.doi10.3390/su16208956


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster