• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules

Thumbnail
View/Open
MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules (916.6Kb)
Date
2019
Author
Ahmed, Rafsan
Baali, Ilyes
Erten, Cesim
Hoxha, Evis
Kazan, Hilal
Metadata
Show full item record
Abstract
Motivation: Genomic analyses from large cancer cohorts have revealed the mutational heterogeneity problem which hinders the identification of driver genes based only on mutation profiles. One way to tackle this problem is to incorporate the fact that genes act together in functional modules. The connectivity knowledge present in existing protein–protein interaction (PPI) networks together with mutation frequencies of genes and the mutual exclusivity of cancer mutations can be utilized to increase the accuracy of identifying cancer driver modules. Results: We present a novel edge-weighted random walk-based approach that incorporates connectivity information in the form of protein–protein interactions (PPIs), mutual exclusivity and coverage to identify cancer driver modules. MEXCOwalk outperforms several state-of-the-art computational methods on TCGA pan-cancer data in terms of recovering known cancer genes, providing modules that are capable of classifying normal and tumor samples and that are enriched for mutations in specific cancer types. Furthermore, the risk scores determined with output modules can stratify patients into low-risk and high-risk groups in multiple cancer types. MEXCOwalk identifies modules containing both well-known cancer genes and putative cancer genes that are rarely mutated in the pan-cancer data. The data, the source code and useful scripts are available at: https://github.com/abu-compbio/MEXCOwalk.
URI
http://hdl.handle.net/20.500.12566/190
Collections
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • PubMed İndeksli Yayınlar Koleksiyonu
  • WOS İndeksli Yayınlar Koleksiyonu

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.