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Abstract

Motivation: Genomic analyses from large cancer cohorts have revealed the mutational heterogeneity problem
which hinders the identification of driver genes based only on mutation profiles. One way to tackle this problem is to
incorporate the fact that genes act together in functional modules. The connectivity knowledge present in existing
protein–protein interaction (PPI) networks together with mutation frequencies of genes and the mutual exclusivity of
cancer mutations can be utilized to increase the accuracy of identifying cancer driver modules.

Results: We present a novel edge-weighted random walk-based approach that incorporates connectivity information
in the form of protein–protein interactions (PPIs), mutual exclusivity and coverage to identify cancer driver modules.
MEXCOwalk outperforms several state-of-the-art computational methods on TCGA pan-cancer data in terms of
recovering known cancer genes, providing modules that are capable of classifying normal and tumor samples and
that are enriched for mutations in specific cancer types. Furthermore, the risk scores determined with output mod-
ules can stratify patients into low-risk and high-risk groups in multiple cancer types. MEXCOwalk identifies modules
containing both well-known cancer genes and putative cancer genes that are rarely mutated in the pan-cancer data.
The data, the source code and useful scripts are available at: https://github.com/abu-compbio/MEXCOwalk.

Contact: hilal.kazan@antalya.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in high-throughput DNA sequencing technology have
allowed several projects such as the TCGA (Weinstein et al., 2013) to
construct and release genomic data from thousands of tumors. This
further gave rise to the design of several computational approaches for
the systematic detection of cancer-related somatic mutations.

Several computational approaches focus on prioritizing inde-
pendent genes to provide hypothesized candidate driver genes, those
defined as being causally linked to oncogenesis (Dopazo and Erten,
2017; Erten et al., 2011; Lawrence et al., 2013; Yang et al., 2017b).
These methods integrate somatic mutation data with additional in-
formation in the form of interaction networks or gene expression
data. Although such gene rankings provide valuable insight regard-
ing potential genes of interest, in many cases mutations at different
loci could lead to the same disease (Vanunu et al., 2010). This genet-
ic heterogeneity may reflect an underlying molecular mechanism in
which the cancer-causing genes form some kind of functional path-
ways or candidate driver modules. Several computational methods
have been suggested for the identification of candidate modules (see
Deng et al., 2019; Dimitrakopoulos and Beerenwinkel, 2017; Zhang
and Zhang, 2018 for recent surveys).

The module identification approaches as applied to cancer can
be viewed in two broad categories based on the types of input data
they employ. The de novo methods rely only on genetic data to dis-
cover novel genetic interactions, as well as cancer-related functional
modules (Leiserson et al., 2013; Liu et al., 2017; Miller et al., 2011;
Vandin et al., 2011b). Due to the large solution space such methods
usually apply a prefiltering based on alteration frequency to reduce
the inherent computational complexity which may reduce sensitivity
by overlooking modules involving rare alterations (Deng et al.,
2019).

On the other hand, knowledge-based methods, in addition to
genomic data, incorporate prior knowledge in the form of pathways,
networks and functional phenotypes to identify driver modules.
Such methods can be subcategorized based on the optimization
goals set within the computational problem formulations they em-
ploy in defining the biologically motivated cancer driver module
identification problem.

The first subcategory consists of methods including Hotnet
(Vandin et al., 2011a), Hotnet2 (Leiserson et al., 2015),
Hierarchical Hotnet (Reyna et al., 2018) which utilize the fact that a
driver pathway tends to be perturbed in a relatively large number of
patients. These methods informally optimize the coverage of the
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modules as identified by the mutation frequencies of the comprising
genes over a cohort of samples constitutes. This is achieved through
a heat-diffusion over an interaction network that diffuses the muta-
tion frequencies throughout the network. The resulting diffusion
values are then used to extract modules exhibiting a large degree of
connectedness as formulated with an appropriate graph-theoretical
connectivity definition, usually the strong connectivity.

The second subcategory of knowledge-based module identifica-
tion methods incorporate an appropriate definition of an important
concept, mutual exclusivity, in addition to the mutation frequencies,
in their computational problem formulations (Babur et al., 2015;
Ciriello et al., 2012; Dao et al., 2017; Kim et al., 2015). Genes that
belong to the same functional pathway show mutually exclusive pat-
terns, that is simultaneous mutations of those genes in the same
patients are less frequent than is expected by chance (Yeang et al.,
2008). Several cancer module identification methods incorporate
this observation in the employed combinatorial optimization prob-
lem definitions. In MEMo, a similarity graph derived from an inter-
action network or functional relation graph is used to extract
maximal cliques. These cliques are then post-processed taking into
account the mutual exclusivity results (Ciriello et al., 2012). In
Babur et al. (2015), a method based on seed-and-growth on a net-
work, where the growth strategy is determined with respect to a
suitably defined mutual exclusion score is proposed. MEMCover
combines pairwise mutual exclusion scores with confidence values
of interactions in the network (Kim et al., 2015). To maximize
high-confidence interactions, mutual exclusivity and coverage simul-
taneously; heavy subnetworks covering every disease case at least k
times are found following a greedy iterative seed-and-growth heuris-
tic. BeWith proposes an ILP formulation that combines interaction
density within a module and several mutual exclusivity definitions
as a maximization goal (Dao et al., 2017).

We propose MEXCOwalk, a knowledge-based method that
incorporates protein–protein interaction (PPI) network data and
mutation profiles, and employs a random walk-based approach to
extract driver modules for cancer. We first provide a novel optimiza-
tion problem definition for identifying driver modules, which takes
into account network connectivity, mutual exclusivity and coverage.
Computational intractability of the provided optimization problem
is shown for completeness. MEXCOwalk is inspired by the Hotnet2
method and its variants, and extends them in two important aspects.
Firstly, similar to Hotnet2 we create a vertex-weighted graph to
apply random-walk on, where vertex weights correspond to cover-
ages. However, different from Hotnet2, our graph is also edge-
weighted, where the edge weights reflect a novel combination of the
coverages and the degree of mutual exclusivity between pairs of
gene neighborhoods. To our knowledge, this is the first method to
employ edge-weighted random walks for identifying driver modules.
Secondly, we provide a novel heuristic based on split-and-extend,
where certain modules are split into pieces to be recombined into
new modules while maintaining high coverage and mutual exclusiv-
ity. We show that MEXCOwalk provides better results than three
alternative knowledge-based methods in terms of recovering known
cancer genes including the rarely mutated ones, enrichment for
mutations in specific cancer types, and the accuracy in classifying
normal and tumor instances.

2 Materials and methods

In the following subsections, we provide the problem definition and
a description of our MEXCOwalk algorithm.

2.1 Problem definition
We provide a novel combinatorial optimization problem definition
to detect driver modules in cancer. Such a definition is not only im-
portant for algorithmic purposes but also to serve as a measure of
performance for alternative methods suggested for the problem.

Let Si denote the set of samples for which gene gi is mutated. Let
G ¼ ðV;EÞ represent the PPI network where each vertex ui 2 V
denotes a gene gi whose expression gives rise to the corresponding

protein in the network and each undirected edge ðui;ujÞ 2 E denotes
the interaction among the proteins corresponding to genes gi, gj.
Henceforth, we assume that gi denotes both the gene and the corre-
sponding vertex in G.

Let M � V be a set of genes denoting a module. We define the

mutual exclusivity of M as, MEXðMÞ ¼ j[8gi2M Si jP
8gi2M

jSi j
and the coverage

of M as, COðMÞ ¼ j[8gi2M Si j
j [8gi2V Si j : We note that although such definitions

have been employed in previous work, the module sizes have not
been taken into consideration (Wu et al., 2015, 2016).

Let P ¼ fM1;M2; . . . Mrg be a set of modules. Let RSðMqÞ de-
note the relative size of a module Mq with respect to the total size,

that is RSðMqÞ ¼ jMq j
j[8Mt2PMt j. We define the mutual exclusivity score

and the coverage score of a set of modules, so that each module Mq

contributes its share proportional to its relative size RSðMqÞ for the
former, whereas for the latter the contribution of Mq is proportional
to the normalized value of 1� RSðMqÞ. Intuitively, a large module
with high mutual exclusivity score should be rewarded, since as the
size of the module increases the chances of achieving better mutual
exclusivity decrease. Analogously, a small module with high cover-
age score should be rewarded. Thus we define the mutual exclusivity
score of P as, MSðPÞ ¼

P
8Mq2P MEXðMqÞ � RSðMqÞ: The coverage

score of P is defined as CSðPÞ ¼
P
8Mq2P

COðMqÞ�ð1�RSðMqÞÞP
8Mt2P

1�RSðMtÞ
if jPj > 1

and CSðPÞ ¼ COðM1Þ, if jPj ¼ 1.
For a graph G and a set Mq of genes, let GðMqÞ denote the sub-

graph of G induced by the vertices corresponding to genes in Mq.
Cancer driver module identification problem: Given as input a

PPI network G, Si for each gene gi, integers total genes and
min module size, find a disjoint set of modules P that maximizes the
driver module set score defined as,

DMSSðPÞ ¼MSðPÞ � CSðPÞ (1)

and that satisfies the following:

1. For each Mq 2 P; GðMqÞ is connected.

2. j [8Mq2P Mqj ¼ total genes.

3. min8Mq2PjMqj ¼ min module size.

THEOREM 1. Cancer driver module identification problem is NP-hard.

PROOF. See Supplementary Material. h

2.2 MEXCOwalk algorithm
Due to the computational intractability of the problem, we propose
a polynomial-time heuristic approach. The pseudocode is provided
in Algorithm 1. There are three main steps of the algorithm, each of
which is described in detail in the following subsections.

2.2.1 Weight assignment with MEX and CO

Given a PPI network G ¼ ðV;EÞ, we first construct a directed,
weighted graph Gw that contains properly defined weights for
vertices and edges. For each gi 2 V we assign a weight, wðgiÞ ¼
COðfgigÞ, thus the weight corresponds to the mutation frequency of
a gene. It represents the heat to be diffused from that vertex during
the random walk procedure.

For each edge of G, represented with an unordered pair (gi, gj),
we generate a directed edge in both directions, that is ½gi; gj� and
½gj; gi�, in Gw. The weight of ½gi; gj�, denoted with w½gi; gj� should re-
flect the ratio of heat transferred from gi to gj, relative to the heat
transferred to all neighbors of gi, at each step of the random-walk.
We first provide a formulation for the weight of an unordered pair
(gi, gj), denoted with w0ðgi; gjÞ, and then normalize this weight with
the sum of weights of all edges incident on gi, to arrive at the
directed edge weight w½gi; gj�.

We formulate w0ðgi; gjÞ so as to mimic the optimization goal
defined in the problem definition. One option could be to define it
solely in terms of the gene pair gi, gj. However, such a simple
weighting scheme may not be sufficient in practice, since the co-
occurrence of a pair in a module increases the chances of the genes
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in their neighborhoods to coexist in the same module as well. This is
especially important for the contribution of mutual exclusivity in
the edge-weight, as pairwise mutual exclusivity values are almost al-
ways close to 1. In order to reflect these observations we consider a
weighting scheme where contribution of mutual exclusivity is
computed within the vertex neighborhoods. More specifically,
let NðgiÞ denote the closed neighborhood of gi, that is NðgiÞ ¼
[8ðgi ;gjÞ2E gj [ fgig. The contribution of mutual exclusivity to the
weight, denoted with MEXnðgi; gjÞ, is the average of MEXðNðgiÞÞ
and MEXðNðgjÞÞ. Thus, we define w0ðgi; gjÞ ¼MEXnðgi; gjÞ �
COðfgigÞ �COðfgjgÞ: The contribution of coverage is computed as
a product so as to reduce the chances of a single gene with large
coverage dominating the weights of incident edges. Furthermore, it
allows the algorithm to favor more balanced coverages among
equal-sized modules; coverage of 100 patients with a module con-
taining a pair of genes, one covering 99 and the other only 1, is less
preferable than a module with a pair where each gene covers 50
patients. To further strengthen the impact of mutual exclusivity on
the weights, we introduce a threshold h, so that for pairs with
MEXn score less than h, edge weights are assigned to 0. Finally, for
the actual weight of the directed edge ½gi; gj� in Gw, we take into ac-
count the weights of all incident edges on gi and define w½gi; gj� ¼

w0 ðgi ;gjÞP
k

w0 ðgi ;gkÞ
.

2.2.2 Edge-weighted random walk

Once Gw is constructed after vertex and edge weight assignments,
we apply an insulated heat diffusion process on Gw that can also be
described as a random walk with restart on the graph. The random

walk starts from a gene gs. At each time step, with probability 1� b,
the random surfer follows one of the edges incident on the current
node with probability proportional to the edge weights. Otherwise,
with probability b, the walker restarts the walk from gs. Here, b is
called the restart probability. The transition matrix T corresponding
to this process can be constructed by setting Tij ¼ w½gj; gi�, if
ðgj; giÞ 2 E, and Tij ¼ 0 otherwise. Thus, Tij can be interpreted as the
probability that a simple random walk will transition from gj to gi.
The random walk process can then be described as a network propa-
gation process by the equation, Ftþ1 ¼ ð1� bÞTFt þ bF0, where Ft is
the distribution of walkers after t steps and F0 is the diagonal matrix
with initial heat values, that is F0½i; i� ¼ COðgiÞ. One strategy to
compute the final distribution of the walk is to run the propagation
function iteratively for increasing t values until Ftþ1 converges
(Hofree et al., 2013). Another strategy, which we chose to employ
in our implementation, is to solve this system numerically using the
equation, F ¼ bðI � ð1� bÞTÞ�1F0 (Leiserson et al., 2015). The
edge-weighted directed graph Gd is constructed by creating directed
edge ½gi; gj� with weight F½i; j�, for every pair i 6¼ j.

The idea of random walks with restart has been employed in the
context of cancer module identification in previous work (Bersanelli
et al., 2016; Leiserson et al., 2015; Reyna et al., 2018; Vandin et al.,
2011a; Yang et al., 2017a). However as the concept of edge weights
is absent, the transition probabilities in those studies are only based
on the degrees of the vertices. In our case, the transition probabilities
reflect the edge weights which in turn model the contribution of a
pair of genes to the maximization score, when placed in the same
module. Similar to the previous methods employing heat diffusion
we assign b ¼ 0:4.

2.2.3 Constructing set of driver modules

We have two main steps. We employ strongly connected compo-
nents (SCCs) as a primitive in both of the steps. We first create an
initial set of candidate modules. For this, we iteratively remove the
smallest weight edge from Gd, add the SCCs of Gd into initial mod-
ule set P, and remove all modules of size less than min module size
from P, until the total number of genes in P decreases to total genes.
The idea of employing SCCs is inspired by Hotnet2. However, for
Hotnet2 the SCCs comprise the final set of modules, whereas we
further process the SCCs via a novel split-and-extend procedure.
The aim of this procedure is to split modules larger than a certain
size into pieces that can be recombined with respect to degrees of
connectivity in Gd, which in turn correspond to the achieved mutual
exclusivity and coverage via the edge weights. We define the
split size to be the maximum outdegree of any vertex in any of the
subgraphs induced by the modules. Any initial candidate module Mq

of size greater than the split size goes through the split-and-extend
procedure. The idea is to first extract seed modules that satisfy cer-
tain size and connectivity criteria, and extend them with small leaf
modules. Given a directed graph Gc, let INðv0Þ denote the isolated
neighborhood of v0 in Gc, that is w 2 INðv0Þ, if and only if w 2
Nðv0Þ and for any directed edge ½w; x� or ½x;w�; x 2 Nðv0Þ. The split
phase of a module Mq consists of removing INðv0Þ from GdðMqÞ,
where v0 is the vertex with largest degree in GdðMqÞ. Assuming its
size is not less than min module size; INðv0Þ is a seed module to be
extended in the next phase, otherwise it is a leaf module that is to be
attached to an appropriate seed module. The remainder of GdðMqÞ
goes through a SCC partitioning. Any resulting component of size
larger than the split size goes through the same split process, any
component of size less than min module size becomes a leaf module,
and any other component in between these two sizes becomes a seed
module. In the extend phase, each leaf module is merged with the
seed module with which it has maximum number of connections in
GdðMqÞ.

3 Discussion of results

We implemented the MEXCOwalk algorithm in Python. The source
code, useful scripts for evaluations and all the input data are freely
available as part of the Supplementary Material. We compare

Algorithm 1. MEXCOwalk

Input: PPI network G ¼ ðV;EÞ, Si for each gene gi, integers

total genes;min module size and threshold h with 0 < h � 1.

Output: Set of driver modules P.

//1. Weight Assignment with MEX and CO

construct Gw by assigning a weight to each gi 2 V; e 2 E

//2. Edge-Weighted Random Walk

construct Gd by applying weighted-random walk on Gw

//3. Constructing Set of Driver Modules

//Initial Candidate Modules

repeat

P ¼ SCCðGdÞ
remove Mq 2 P with jMqj < min module size

remove min-weight edge from Gd

until j [8Mq2P Mqj � total genes

//Split-and-extend

split size ¼ max8GdðMqÞoutdegðGdðMqÞÞ
for each Mq 2 P with jMqj > split size do

remove Mq from P and let L ¼ fGdðMqÞg
//Split

while L not empty do

remove Gc from L and let v0 be max outdegree vertex in Gc

remove INðv0Þ from Gc and insert it into leafq or seedq

for each Mj 2 SCCðGcÞ do

insert Mj into one of L, leafq, or seedq

end for

end while

//Extend

for each Mi in leafq do

merge Mi with appropriate Mj 2 seedq

end for

insert modules in seedq into output set of modules P

end for

MEXCOwalk 3
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MEXCOwalk results against those of three other existing
knowledge-based cancer driver module identification methods:
Hotnet2, MEMCover and Hierarchical Hotnet. The first two bench-
mark algorithms are chosen as representatives of their respective
subcategories; Hotnet2 is a popular benchmark method based on
optimizing coverage via a heat-diffusion heuristic and MEMCover is
a popular algorithm among those optimizing mutual exclusivity
as well as coverage via a greedy seed-and-growth heuristic.
Hierarchical Hotnet is chosen as a third benchmark method, as it is
one of the most recent cancer driver module identification methods.

3.1 Input data and parameter settings
All four methods, including MEXCOwalk, assume same type of in-
put data in the form of mutation data of available samples and a
H.Sapiens PPI network. We employ somatic aberration data from
TCGA, preprocessed and provided by Leiserson et al. (2015). This
dataset includes TCGA pan-cancer data consisting of 12 cancer
types. The preprocessing step includes the removal of hypermutated
samples and genes with low expression in all tumor types. After the
filtering, the dataset contains somatic aberrations for 11 565 genes
in 3110 samples. The mutation frequency of a gene gi is calculated
as the number of samples with at least one single nucleotide vari-
ation or copy number alteration in gi divided by the number of all
samples. As for the PPI network, we used the HINTþHI2012 net-
work (Das and Yu, 2012; Leiserson et al., 2015; Yu et al., 2011).
We execute each of the four algorithms on the largest connected
component of this combined network that consists of 40 704 inter-
actions among 9858 proteins.

Regarding MEXCOwalk, we have settings for three parameters:
the mutual exclusivity threshold h, the total genes and the
min module size. In the main document, we present results for
h ¼ 0:7. The results with other threshold values are available in the
Supplementary Material. The total genes parameter is considered
the main independent variable; we obtain the results of each evalu-
ation under the settings total genes ¼ 100; 200; . . . ; 2500. Finally,
we set min module size to 3 for the results discussed in the main
document, as this constitutes a nontrivial mimimum module size
compatible with the problem definition. Further results of the set-
tings of min module size are in the Supplementary Material. For
Hotnet2, we obtain results for varying values of total genes ¼
100;200; . . . ;2500, with the default value of min module size ¼ 3.
We present results of Hierarchical Hotnet where the clustering par-
ameter d is determined by the recommended permutation test.
Hierarchical Hotnet outputs a total of 806 genes in modules of size
greater than one. Since some of these modules may contain modules
with two genes, we generate a filtered version as well, where all such
modules are removed, resulting in modules with a total of 554
genes. In what follows, we refer to the former version as
HierHotnet_v1 and the latter version as HierHotnet_v2. For
MEMCover, as recommended in the original paper, mutual exclu-
sivity scores are obtained from type-restricted permutation test with
all pan-cancer samples, that is the TR_test. Because confidence
scores are not available for HINT þ HI2012 network, we set the
confidence score of all edges to 1 when calculating the edge weights
for the MEMCover model. We set the coverage parameter k to its
default value of 15. MEMCover introduces a parameter, f ðhÞ, that is
used to control the trade-off between the output number of modules
and the average weights within each module. It indirectly controls
the module sizes; the smaller f ðhÞ, the larger the modules output by
MEMCover in general. We consider three settings for the MEMCover
algorithm, referred to as MEMCover_v1, MEMCover_v2 and
MEMCover_v3, respectively. For the first one, we assign
f ðhÞ ¼ 0:548, which is achieved by setting h parameter (not to be
confused with the h we employ in MEXCOwalk) to 40%, as recom-
mended in the original paper. For the second one, we assign
f ðhÞ ¼ 0:03, which is the setting that minimizes the percentage of
size one and size two modules. Finally, the last one corresponds to
the setting where f ðhÞ ¼ 0:03 and all modules of size <3 are
removed. To obtain results with varying total genes from 100 to
2500 we consider the modules formed by the first total genes many
genes output by each version, since the order MEMCover outputs

the modules reflects the algorithm’s quality preferences. Values of
total genes larger than 1600 are not available for MEMCover_v3 as
it outputs 1684 genes in total.

3.2 Static evaluations
Most of the existing driver module identification methods employ
static evaluations, where the union of the genes in all the modules
are compared against a reference set of cancer genes. For consistency
with previous work, our first evaluation compares the algorithms
based on their ability to recover these known cancer genes.
COSMIC Cancer Gene Census (CGC) database (Forbes et al., 2017)
is one popular reference gene set containing 616 genes with muta-
tions that have been causally implicated in cancer. Out of 616 genes,
the number of genes that exist both in TCGA data and in the PPI
network is 498. The area under the ROC (AUROC) analysis with re-
spect to the COSMIC gene set indicates that MEXCOwalk and
MEMCover_v1 have the same AUROC value of 0.083.
MEMCover_v2 ranks the second with 0.078. The AUROC value of
Hotnet2 is 0.067. AUROC is undefined for HierHotnet_v1,
HierHotnet_v2 and MEMCover_v3. Nevertheless inspecting
MEMCover_v3’s receiver operating characteristic (ROC) curve
plots, we can observe that its outputs provide worse true positive
(TP) rates than those of MEMCover_v2 and better rates than those
of Hotnet2. The results of HierHotnet versions almost overlap with
those of Hotnet2. Another reference gene set is DGIdb 3.0, which
contains a set of 1062 druggable genes identified by mining existing
resources on how mutated genes might be targeted therapeutically
or prioritized for drug development (Coffman et al., 2017). With re-
spect to this reference set, MEXCOwalk achieves the best AUROC
value of 0.043, followed by MEMCover_v1 and MEMCover_v2,
each with an AUROC of 0.040. Finally, Hotnet2 achieves an
AUROC of 0.039.

To find out the performance of the module finding algorithms in
identifying genes with rare mutations, we repeat the above analysis,
limiting each reference to the set of genes that have upto 1% and
upto 2% mutation frequencies in the pan-cancer patient cohort
under study. With regard to the COSMIC gene set, out of 504 genes,
342 are in the 1% frequency range and 438 are in the 2% frequency
range. MEXCOwalk performs the best, achieving AUROC values of
0.082 and 0.085, for the frequencies of 1% and 2%, respectively.
AUROC values of MEMCover_v1, MEMCover_v2 and Hotnet2 are
respectively 0:077;0:071; 0:069 for the 1% frequency case and
0:081; 0:074;0:070 for the 2% frequency case. With respect to the
DGIdb 3.0 reference set, out of 1062 genes, 913 are in the 1% range
and 1015 are in the 2% range. MEXCOwalk again achieves the
highest AUROC values of 0.044 and 0.045, for the frequencies of
1% and 2%, respectively. MEMCover_v1 and MEMCover_v2 both
have an AUROC value of 0.041 and Hotnet2 has an AUROC value
of 0.039 for both frequencies. Detailed figures plotting the ROC
curves of the set of genes in the union of modules of each algorithm
with respect to the CGC, DGIdb 3.0 and their rare mutation-filtered
versions can be found in the Supplementary Material.

Finally, to emphasize the disease aspect of the problem that sepa-
rates it from simple module identification in a given PPI network and
to verify the effects of employed mutation frequencies we conduct fur-
ther tests on randomized data. For this, we first assign the actual mu-
tation frequencies to the set of mutated genes randomly. Next for
each patient, we select as many genes as are mutated in the original
patient data to be mutated, where the selection probability of each
gene is proportional to newly assigned mutation frequencies. We exe-
cute MEXCOwalk on the generated data and repeat the static evalua-
tions with respect to the CGC, DGIdb 3.0, and their rare mutation-
filtered versions. Detailed results plotting overlaps with each reference
set can be found in the Supplementary Material. As expected, the
overlap ratios of the modules obtained with original data are much
higher than those obtained with random mutations data.

3.3 Modular evaluations
The static evaluations of the previous subsection measure the cap-
ability of an algorithm in dissecting cancer-related genes in the
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union of the modules it provides, without regard for the generated
specific modules and their interrelations. With respect to this evalu-
ation, for instance, for a fixed set of genes, an output placing every
single gene of the set into its own module in one extreme, an output
consisting of a single large module with all the genes in the set in an-
other extreme, and every other output in between these extremes
would all provide same scores. Neither extreme is suitable for the
purposes of module identification. The original MEMCover, that is
MEMCover_v1, provides outputs similar to the former extreme,
where almost 70% of all output genes are in modules of size one. It
produces modules of average size 1.2, for almost all values of
total genes, whereas average size of MEXCOwalk modules is be-
tween 6.5 and 9. This observation regarding module sizes indicates
that, although the AUROC value of MEMCover_v1 with respect to
the COSMIC reference set is as good as that of MEXCOwalk, the
former only achieves this at the expense of providing trivial outputs
with one gene or two genes in a module. Such outputs are against
the very notion that each driver module should identify a functional
pathway important for cancer. On the other hand, Hotnet2 produ-
ces modules similar to the latter extreme; more than 60% of output
genes are in a single large module between 500 and 2000 total genes
and this percentage gets to more than 80% for total genes > 2000.
Plots depicting the percentages of genes in modules of largest size,
smallest size and the average module sizes with respect to increasing
total genes for all algorithms under consideration can be found in
the Supplementary Material. To compensate for such a drawback of
static evaluations, we provide three modularity-based metrics and
evaluate the output module sets of alternative methods based on
these metrics.

3.3.1 Driver module set score

Our first modular evaluation metric is the main optimization goal of
the cancer driver module identification problem, that is the driver
module set scores (DMSS) defined in Equation 1. Figure 1A shows
that MEXCoWalk modules have better DMSS values than the mod-
ule sets of all the other methods. The difference is much more dra-
matic for smaller total genes values such as 100 and 200. Those of
Hierarchical Hotnet and Hotnet2 are among the worst, especially
for settings of total genes > 500. MEMCover_v1 performs worse
than the two other MEMCover versions, as it provides many size 1
and size 2 modules. This finding demonstrates another merit of
the DMSS definition; if there are many small modules, assuming the
mutual exclusivity does not decrease substantially by enlarging the
modules, then our optimization score function prefers outputs with
larger modules. Consider for instance, the following special case
where we have 10 genes under consideration, each covering x out of
a total of y samples. The output consisting of a set of modules each

containing one gene has a DMSS of x/y. On the other hand, assum-
ing a MEX score of m for every pair of genes, the output with any
pair of genes per module has a DMSS of 2m2x=y. This implies that
the latter is a more preferable module set than the former, as long as
m >

ffiffiffiffiffiffiffiffi
1=2

p
. It corresponds to the case where upto almost 58% of

samples covered by a gene to be in the intersection of samples cov-
ered by another gene.

3.3.2 Cancer type specificity score

Our second modularity-based evaluation metric is defined with re-
spect to cancer type specificity. We test an output module set in
terms of enrichment for mutations in a specific cancer type using the
Fisher’s exact test. Note that we employ 11 cancer types rather than
12, as colon and rectal tumors are merged into a single group. For a
module M, let SM denote the set of patients where at least one of the
genes in M is mutated. For a cancer type t, let St

M denote the subset
of patients in SM diagnosed with cancer type t. Assuming nt denotes
the number of patients of cancer type t in the whole dataset, we
calculate the Fisher’s exact test with the following entries in the

contingency table in row-major order: jSt
Mj; nt � jSt

Mj;
P

t0 6¼tjSt0

Mj;P
t0 6¼tnt0 � jSt0

Mj. We use the false discovery rate correction procedure

for multiple testing correction (Benjamini and Hochberg, 1995).
Let P ¼ fM1;M2; . . . Mrg be a set of modules. For each module

Mq 2 P, the described process results in a P-value for every cancer
type t, denoted with pt

q. We define the cancer type specificity score
of P as the average �log of best P-value per module. More formally,

CTSSðPÞ ¼
P

Mq2P�logðmin8tðpt
qÞÞ

r
(2)

Figure 1B shows the CTSS scores of the module sets provided by
the methods under consideration; see Supplementary Material for
detailed distribution of individual P-values. Compared to the other
methods, MEXCOwalk provides a larger CTSS value for every set-
ting of total genes, indicating that the output modules are strongly
enriched for particular cancer types. We also observe that module
sets of MEMCover versions perform better than those of Hotnet2
and Hierarchical Hotnet.

Note that Figure 1B, bears a striking similarity to the figure plot-
ting DMSS, Figure 1A. This indicates that our optimization goal, as
defined by the combinatorial metric DMSS to measure the quality of
output set of modules, is further validated by a biological metric.

3.3.3 Mean classification accuracy score

We examine the predictive value of an output set of modules in
classifying tumor and normal samples of TCGA pan-cancer data

A B

Fig. 1. (A) DMSS evaluations of output modules of MEXCOwalk, MEMCover, Hotnet2 and Hierarchical Hotnet for increasing values of total genes. (B) CTSS evaluations of

output modules of MEXCOwalk, MEMCover, Hotnet2 and Hierarchical Hotnet for increasing values of total genes
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with k-nearest-neighbor classifier using Euclidean distance with
k¼1. For a given test sample s and the gene set Mq, we construct a
vector vs of dimension jMqj, which consists of expression values of
the gene set in s. We compute vs’s Euclidean distance to each of the
corresponding vectors in the training set of samples. Since k¼1, to
classify s as tumor or normal, the classifier simply outputs the label
of the nearest neighbor of vs. To evaluate the predictive performance
of a module Mq, we repeat the same procedure for all test samples
and use 5-fold stratified cross-validation accuracy. We download
the gene expression data from Firebrowse database (http://fire
browse.org; version 2016_01_28) which consists of 437 normal and
4307 tumor samples. Note that since this data is unbalanced, we
randomly undersample the set of tumor samples to match the size of
the set of normal samples and implement the classification described

above on this undersampled data. We repeat the undersampling pro-
cedure 100 times. We calculate AccðMqÞ as the average accuracy of
module Mq across the cross-validation folds and the 100 samplings.
We then define the Mean Classification Accuracy Score (MCAS) of
a set of modules as the average Acc across all modules.

The plots of the MCAS scores of the module sets of all four
methods for varying total genes are provided in Figure 2; see
Supplementary Material for detailed distribution of individual ac-
curacy values. MEXCOwalk consistently achieves the top accuracy
for all settings of total genes, implying that MEXCOwalk modules
can more accurately perform tumor/normal classification than the
other methods. Interestingly, Hierarchical Hotnet performs worse
than Hotnet2. The low performance of MEMCover_v1 and
MEMCover_v2 is due to their small output modules containing one
or two genes. On the other hand, because size one and two modules
are removed, MEMCover_v3 shows a better performance than
MEMCover_v1 and MEMCover_v2, in contrast to their relative
performances in recovering known cancer genes. Note also that, this
does not necessarily imply that MCAS performance is always pro-
portional to the module sizes. For instance, Hotnet2 performs worse
than MEXCOwalk, even though Hotnet2 modules are much larger
than those of MEXCOwalk.

3.4 Analysis of MEXCOwalk modules
Figure 3A shows the 12 modules that MEXCOwalk identifies when
total genes is set to 100. The sizes of the modules range between 3
and 31, and their coverage values range between 5% and 50%.
Node sizes correspond to mutation frequencies. Note that all the
genes identified by MEXCOwalk have mutation frequency >0, since
genes with zero mutation frequency have no assigned heat to be
propagated to the other nodes during random walk. As such, these
genes cannot be part of the SCCs due to missing outgoing edges.
Hotnet2 and Hierarchical Hotnet do not identify genes with zero
mutation frequency either, due to the same reason. Lastly, due to
the constraints imposed on module growth process, MEMCover
too only identifies genes with >0 mutation frequency. Shown edges
correspond to the PPI network edges, whereas the weight of an edge

A B

Fig. 3. (A) MEXCOwalk output modules when total genes ¼ 100. Diamond shaped nodes correspond to CGC genes. Sizes of the nodes are proportional with mutation fre-

quencies of corresponding genes. Edges within the module are colored black, whereas the edges between the modules are colored in grey. Edge weights are reflected in the

thicknesses of the line segments. Color of a module denotes the cancer type with the strongest enrichment for mutations in genes of that module. The legend for the color codes

are shown on the right. Each module is named with the largest degree gene in the module. (B) Results of cancer type specificity and survival analyses. Rows correspond to mod-

ules and columns correspond to cancer types. Colors of the matrix entries indicate the significance of enrichment for cancer types in terms of Fisher’s exact test P-values. Stars

indicate the significance of log-rank test P-values in survival analyses

Fig. 2. MCAS evaluations of output modules of MEXCOwalk, MEMCover,

Hotnet2 and Hierarchical Hotnet for increasing values of total genes

6 R.Ahmed et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btz655/5552148 by U

niversity of Toronto Libraries user on 11 D
ecem

ber 2019

http://firebrowse.org
http://firebrowse.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz655#supplementary-data


is the smaller of the weights of the corresponding directed edges
from Gd, as computed through edge-weighted random walk and
thus represents the degree of mutual exclusivity and coverage
assigned by MEXCOwalk.

Many of these modules are part of well-known cancer-related
pathways such as those centered at EGFR, TP53, PIK3CA and
CCND1. Analyzing the interactions between the modules, EGFR
module can be seen as an important hub module between some im-
portant modules such as the TP53 module, CCND1 module and the
PIK3CA module; without the EGFR module these three modules
would almost be isolated in the induced subgraph. The EGFR mod-
ule contains several known cancer genes many of which are related
to cell cycle control: VHL, CDKN2A, NPM1, ERBB2, ERBB4,
MDM2, MDM4, STK11, CDH1, ATM. Seven cancer types are
enriched for mutations in this module with GBM being the most sig-
nificant enrichment; Fisher’s exact test P-value is ¼ 3:5e� 21.
Indeed, EGFR gene is mutated in more than half of all GBM patients
and anti-EGFR agents are already used for GBM treatment (Taylor
et al., 2012). However, resistance to these agents is a major problem
suggesting that treatment strategies might benefit from targeting
multiple genes in this module. This module also contains TLN1,
which is not one of the known cancer genes listed in CGC.
However, it is mutated in 104 patients across 10 cancer types and it
has previously been associated with tumorigenecity and chemosensi-
tivity (Fang et al., 2016; Singel et al., 2013). We investigate whether
the genes in this module are predictive of patient survival profiles by
calculating a risk score for each patient as in Beer et al. (2002) and
Shrestha et al. (2017). When we divide the GBM patients into two
as training and test sets, the low-risk and high-risk thresholds that
we identify from the training set are successful in stratifying the
patients into low-risk and high-risk groups in the test set with the
log-rank test P-value ¼ 0:0004; see Figure 3B. Our TP53 module
includes 30 interactors out of 213 available in the HINTþHI2012
PPI network. TP53 shares the highest edge weight with WT1, which
is a transcription factor that has roles in cellular development and
cell survival. Another gene which has a large edge weight is CUL9.
Its mutation frequency is only 0.015, which would possibly make it
easy to miss through single-gene tests. The PIK3CA module identi-
fies several genes in the PI3K pathway whose deregulation is critical
in cancer development and progression (Karakas et al., 2006). The
module provides a chance to observe the importance of incorporat-
ing mutual exclusivity in MEXCOwalk. Among all the interactions
presented in the induced subgraph of 100 genes in all 12 modules,
the one between PIK3CA and PIK3R has the largest weight. These
genes are mutated in 602 and 155 patients respectively, although the
overlap between the two patient sets is only 18 indicating the high
mutual exclusivity between the pair of genes. The CCND1 module
is yet another fairly known cancer driver module (Kim and Diehl,
2009; Malumbres and Barbacid, 2009). Other than EGFR, it is the
module that contains the most reference genes; all nine genes in
the module except CUL1, are in the CGC database. It is shown that
the mutations, amplification and expression changes of these genes,
which alter cell cycle progression, are frequently observed in a var-
iety of tumors (Kim and Diehl, 2009; Malumbres and Barbacid,
2009). Indeed, we find significant association of this module with
patients’ survival outcome in CRC, KIRC, LAML and UCEC types
(see Figure 3B).

A comparison of the output modules of Hotnet2 and
MEMCover_v1 in the same setting of total genes ¼ 100 leads to
interesting observations; see Supplementary Material for the plots.
47 genes are common between MEXCOwalk and MEMCover_v1,
whereas only 32 genes are common between MEXCOwalk and
Hotnet2. MEMCover_v1 identifies 76 modules in total. Out of
these, 54 contain only a single gene and 20 contain two genes. We
observe a similar result when we analyze MEMCover’s published
results on HumanNet when total_genes is 100. Out of the 62 output
modules, 31 are of size one and 27 are of size two indicating that
this is not a bias we introduce by running MEMCover with a differ-
ent dataset. With such a difference in module sizes, it is difficult to
compare MEXCOwalk modules with those of MEMCover.
Comparing modules of MEXCOwalk with those of Hotnet2, we

observe several interactions between MEXCOwalk modules, where-
as for Hotnet2, among all 100 genes, the only such interaction is be-
tween ATM and STK11. In total, there are 48 genes of
MEXCOwalk in the reference set, whereas Hotnet2 provides 28
such genes. Every MEXCOwalk module except the NOTCH3 mod-
ule, contains a known driver. In contrast, 8 out of the 19 modules
identified by Hotnet2 lack a known driver. Hotnet2 is unable to
identify any of the genes in our CNND1 module which contains sev-
eral cell cycle regulators which also include eight known cancer driv-
ers. Similarly, the majority of the genes in our SMARCA4, MAP3K1
and EGFR modules containing several known drivers are not pre-
sent among Hotnet2 modules.

4 Sensitivity analysis of MEXCOwalk

We assess the sensitivity of our results to the restart probability par-
ameter b by employing the settings of 0.2, 0.3, 0.5, 0.6 and 0.7, in
addition to the default setting of b ¼ 0:4. Supplementary Table S1
shows the percentage of the number of different genes in
MEXCOwalk output gene sets at different b settings, with respect to
the default b ¼ 0:4. Changing b does not significantly change the
output module sets of MEXCOwalk; the largest percentage differ-
ence is 10%. Since this difference is achieved at b ¼ 0:2, we
recalculate all the evaluation metrics with this setting to observe the
worst-case scenario for the sensitivity analysis. Figures comparing
the evaluation results of with b ¼ 0:2 and b ¼ 0:4 are available in
the Supplementary Material. Both settings provide almost equal
results for almost all the evaluation metrics and thus changing b to
other values do not affect the main conclusions of the study under
the default setting.

We also evaluate the sensitivity of our results to the employed
PPI network. We repeat all the experiments with the IntAct network
downloaded from https://www.ebi.ac.uk/intact/ on February 11,
2019 (Orchard et al., 2014). We limit the gene set of the IntAct net-
work to that of the HINTþHI2012 network. We further remove the
interactions with low confidence values. We determine the confi-
dence level threshold to be 0.35, so that the density of the filtered
IntAct network matches the density of HINTþHI2012. The final fil-
tered IntAct network includes 9858 genes and 83 124 interactions.
Supplementary Table S2 shows the percentage of the number of dif-
ferent genes in the output modules when the input PPI network is
changed from HINTþHI2012 to IntAct. Interestingly, although the
output gene sets are quite different (in some cases more than 50%),
for almost all the static evaluations, the performances of
MEXCOwalk with these two different interaction networks, yield
almost the same results. The performances with respect to DMSS,
CTSS and MCAS are also similar, with the IntAct version of
MEXCOwalk giving slightly better results than the HINTþHI2012
version, especially for the DMSS and MCAS. This could in part be
due to the fact that IntAct is a more up-to-date PPI network source
than the HINTþHI2012 network.

5 Conclusion

In this study, we introduce a novel method, MEXCOwalk, that
incorporates network connectivity, mutual exclusivity and coverage
information to identify cancer driver modules.

The optimization function employed by MEXCOwalk combines
the mutual exclusivity and coverage scores of modules after normaliz-
ing with suitable functions of module size. MEXCOwalk employs a
vertex-weighted, edge-weighted random walk strategy where the edge
weights reflect a novel combination of mutual exclusivity and cover-
age. It is able to output a set of modules with a predefined overall
size, that is total genes. This flexibility avoids ad hoc selection of an
edge weight threshold and when applied to the other existing meth-
ods, it enables a robust comparison across different number of output
genes. Another main contribution is to be able to split large modules
in a systematic way, which becomes critical for large total genes
values. Indeed, Hotnet2 suffers from this problem severely.
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Though MEXCOwalk and MEMCover output modules result in
similar COSMIC overlap scores, the fact that the majority of
MEMCover output modules are of size one and two, raises important
questions on its ability to identify modules. We also show that
MEXCOwalk is robust against different settings of its parameters. In
summary, MEXCOwalk identifies a number of known cancer mod-
ules as well as several putative ones. Further work on these modules
may provide new insights into cancer biology. In the future, addition-
al types of genetic and epigenetic aberrations can be incorporated as
they become available. Finally, adaptations of MEXCOwalk to in-
clude network density-related scores in edge weights constitute
planned extensions of this work.
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