• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • İnşaat Mühendisliği Bölümü / Department of Civil Engineering
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • İnşaat Mühendisliği Bölümü / Department of Civil Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydraulic and strength characteristics of pervious concrete containing a high volume of construction and demolition waste as aggregates

Thumbnail
Date
2020
Author
Ibrahim, Hussein Adebayo
Goh, Yingxin
Ng, Zheng Ann
Yap, Soon Poh
Moa, Kim Hung
Yuen, Choon Wah
Abutaha, Fuad
Metadata
Show full item record
Abstract
Recently, construction and demolition waste generated in Malaysia has dramatically increased. For long-term sustainable development, demolition wastes can be recycled in concrete production. Recycled concrete aggregate (RCA) was successfully used in our previous study as coarse aggregate replacement. This research aims to explore the production of a greener RCA-based pervious concrete by using recycled fine aggregates (RFA). The percentage of waste in the concrete will be 72% by volume of the total concrete mixture constituents. The mixture design is based on a targeted porosity of 15% at the water to cement (w/c) ratios of 0.30, 0.35, and 0.40. Furthermore, the effects of 10% (weight of coarse aggregate) river sand and RFA on the mechanical properties and hydraulic conductivity were compared. The experimental results revealed that 0.35 w/c produced the best mechanical properties. However, the w/c ratio had no effect on the hydraulic properties of the concrete. In addition, incorporating RFA into the concrete improved its mechanical properties, where the compressive and splitting tensile strength of the concrete improved by 7% and 37% respectively. Comparing between RFA and river sand, microscopic analyses showed that the adhered mortar on RFA reduced its crack diversion ability in enhancing the pervious concrete’s strength.
URI
http://hdl.handle.net/20.500.12566/899
Collections
  • İnşaat Mühendisliği Bölümü / Department of Civil Engineering
  • Scopus İndeksli Yayınlar Koleksiyonu
  • WOS İndeksli Yayınlar Koleksiyonu

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.