Physical layer security against eavesdropping in the internet of drones (IoD) based communication systems
Abstract
rones or unmanned aerial vehicles (UAVs) communication technology, which has recently been
thoroughly studied and adopted by 3GPP standard (Release 15) due to its dynamic, flexible, and flying
nature, is expected to be an integral part of future wireless communications and Internet of drones
(IoD) applications. However, due to the unique transmission characteristics and nature of UAV systems
including broadcasting, dominant line of site and poor scattering, providing confidentiality for legitimate
receivers against unintended ones (eavesdroppers) appears to be a challenging goal to achieve in such
scenarios. Besides, the special features of UAVs represented by having limited power (battery-operated)
and precessing (light RAM and CPU capabilities), makes applying complex cryptography approaches
very challenging and inefficient for such systems. This motives the utilization of alternative approaches
enabled by physical layer security (PLS) concept for securing UAV-based systems. Techniques based
on PLS are deemed to be promising due to their ability to provide inherent secrecy that is complexity independent, where no matter what computational processing power the eavesdropper may have, there
is no way to decrypt the PLS algorithms. This work is dedicated to highlight and overview the latest
advances and state of art researches on the field of applying PLS to UAV systems in a unified and
structured manner. Particularity, it discusses and explains the different, possible PLS scenarios and
use cases of UAVs, which are categorized based on how the drone is utilized and employed in the
communication system setup. The main classified categories include the deployment of the flying, mobile
UAV as a 1) base station (BS), 2) user equipment (UE), 2) relay, or 4) jammer. Then, recommendations
and future open research issues are stated and discussed.