• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik - Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik - Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-coherent OFDM-subcarrier power modulation for low complexity and high throughput IoT applications

Thumbnail
View/Open
Non-coherent OFDM-subcarrier power modulation for low complexity and high throughput IoT applications (1.550Mb)
Date
2020
Author
Hamamreh, Jehad M.
Abewa, Mohamedou
Metadata
Show full item record
Abstract
Aiming to reduce the transceiver complexity and power consumption of communication systems dedicated to serving future Internet of Things (IoT) applications, researchers have taken many approaches with varying degrees of success. A promising candidate solution that can reduce complexity significantly and thus also enhance power-saving is the use of non-coherent modulation-based schemes. Utilizing a non-coherent structure rids the system of any dependency on the knowledge of the phase of the transmitted signal during demodulation. However, although most of the available non-coherent techniques in the literature reduce the complexity of the system, they, unfortunately, suffer from a drawback of some sort, especially in reducing the overall spectral efficiency of the system. To address this problem, we propose a new non-coherent modulation scheme called orthogonal frequency division multiplexing with subcarrier power modulation and differential phase-shift keying (OFDM-SPM-DPSK), as an effective modulation technique for future 6G and beyond systems. The proposed technique has the potential to reduce complexity, enhance power-saving while improving spectral efficiency significantly, resulting in a spectral efficiency performance twice that of a conventional non-coherent OFDM system. Furthermore, receive diversity is implemented through maximal ratio combining to overcome the bit error degradation brought by the adoption of a non-coherent structure. Additionally, the computational complexity is discussed and shown to be as efficient as OFDM, where the proposed scheme does not add further complexity over conventional OFDM.
URI
http://hdl.handle.net/20.500.12566/874
Collections
  • Elektrik - Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.