A novel small-scale nonorthogonal communication technique using auxiliary signal superposition with enhanced security for future wireless networks
Özet
In this work, an advanced novel small-scale non-orthogonal communication technique utilizing physical layer security (PLS) for enhanced security and reliability for two users is proposed. This work is motivated by current challenges faced by conventional non-orthogonal multiple access (NOMA) techniques, for instance, the recent exclusion of power-domain NOMA (PD-NOMA) from 3GPP release 17 due to its performance degradation resulting from channel estimation errors and the utilization of successive interference cancellation (SIC) algorithms at the receiver. The proposed model uses the wireless channel characteristics to eliminate user interference as well as completely degrade the received signal at the eavesdropper’s terminal. More specifically, auxiliary signals are precisely designed and superimposed on top of user signals from a dual-transmitter system to provide perfect secrecy against external and internal eavesdroppers, while providing low complexity at the receiver. The efficiency and novelty of the proposed system are presented via mathematical analysis and validated by Monte Carlo simulations. Results obtained indicate that the proposed model achieves less complex, secure, and more efficient communication, suitable for low power consumption and limited processing applications.