Show simple item record

dc.contributor.authorÖzdoğan, Hasan
dc.contributor.authorÜncü, Yiğit Ali
dc.contributor.authorŞekerci, Mert
dc.contributor.authorKaplan, Abdullah
dc.date.accessioned2021-01-12T07:15:25Z
dc.date.available2021-01-12T07:15:25Z
dc.date.issued2021
dc.identifier.citationÖzdoğan, H., Üncü, Y. A., Şekerci, M., & Kaplan, A. (2021). Estimations of level density parameters by using artificial neural network for phenomenological level density models. Applied Radiation and Isotopes, 169.en_US
dc.identifier.issn0969-8043
dc.identifier.urihttp://hdl.handle.net/20.500.12566/614
dc.description.abstractThe main aim of this study is to develop accurate artificial neural network (ANN) algorithms to estimate level density parameters. An efficient Bayesian-based algorithm is presented for classification algorithms. Unknown model parameters are estimated using the observed data, from which the Bayesian-based algorithm is predicted. This paper focuses on the Bayesian method for parameter estimations of Gilbert Cameron Model (GCM), Back Shifted Fermi Gas Model (BSFGM) and Generalised Super Fluid Model (GSM), which are known as the phonemological level density models. Obtained level density parameters have been compared with the Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations (RIPL) data. R values of the Bayesian method have been found as 0.9946, 0.9981 and 0.9824 for BSFGM, GCM and GSM, respectively. In order to validate our results, default level density parameters of TALYS 1.95 code have been changed with our newly obtained results and photo-neutron cross-section calculations of the 117Sn(γ, n)116Sn, 118Sn(γ, n)117Sn, 119Sn(γ, n)118Sn and 120Sn(γ, n)119Sn reactions have been calculated by using these newly obtained level density parameters.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherApplied Radiation and Isotopesen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectYapay sinir ağıtr_TR
dc.subjectLevel density modelsen_US
dc.subjectSeviye yoğunluğu modelleritr_TR
dc.subjectLevel density parametersen_US
dc.subjectSeviye yoğunluğu parametreleritr_TR
dc.subjectBayesian-based algorithmen_US
dc.subjectBayez temelli algoritmatr_TR
dc.titleEstimations of level density parameters by using artificial neural network for phenomenological level density modelsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.scopus2-s2.0-85098986307
dc.identifier.volume169
dc.contributor.orcid0000-0001-6127-9680 [Özdoğan, Hasan]
dc.contributor.abuauthorÖzdoğan, Hasan
dc.contributor.yokid116763 [Özdoğan, Hasan]
dc.contributor.ScopusAuthorID55123312600 [Özdoğan, Hasan]
dc.identifier.PubMedID33434776
dc.identifier.doi10.1016/j.apradiso.2020.109583


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record