• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Tıbbi Görüntüleme Teknikleri Programı / Medical Imaging Techniques Program
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Tıbbi Görüntüleme Teknikleri Programı / Medical Imaging Techniques Program
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimations of level density parameters by using artificial neural network for phenomenological level density models

Thumbnail
Date
2021
Author
Özdoğan, Hasan
Üncü, Yiğit Ali
Şekerci, Mert
Kaplan, Abdullah
Metadata
Show full item record
Abstract
The main aim of this study is to develop accurate artificial neural network (ANN) algorithms to estimate level density parameters. An efficient Bayesian-based algorithm is presented for classification algorithms. Unknown model parameters are estimated using the observed data, from which the Bayesian-based algorithm is predicted. This paper focuses on the Bayesian method for parameter estimations of Gilbert Cameron Model (GCM), Back Shifted Fermi Gas Model (BSFGM) and Generalised Super Fluid Model (GSM), which are known as the phonemological level density models. Obtained level density parameters have been compared with the Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations (RIPL) data. R values of the Bayesian method have been found as 0.9946, 0.9981 and 0.9824 for BSFGM, GCM and GSM, respectively. In order to validate our results, default level density parameters of TALYS 1.95 code have been changed with our newly obtained results and photo-neutron cross-section calculations of the 117Sn(γ, n)116Sn, 118Sn(γ, n)117Sn, 119Sn(γ, n)118Sn and 120Sn(γ, n)119Sn reactions have been calculated by using these newly obtained level density parameters.
URI
http://hdl.handle.net/20.500.12566/614
Collections
  • PubMed İndeksli Yayınlar Koleksiyonu
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Tıbbi Görüntüleme Teknikleri Programı / Medical Imaging Techniques Program

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.