Basit öğe kaydını göster

dc.contributor.authorAkçay, Hüseyin Gökhan
dc.contributor.authorKabasakal, Bekir
dc.contributor.authorAksu, Duygugül
dc.contributor.authorDemir, Nusret
dc.contributor.authorÖz, Melih
dc.contributor.authorErdoğan, Ali
dc.date.accessioned2020-12-21T07:53:07Z
dc.date.available2020-12-21T07:53:07Z
dc.date.issued2020
dc.identifier.citationAkçay, H. G., Kabasakal, B., Aksu, D., Demir, N., Öz, M. & Erdoğan, A. (2020). Automated bird counting with deep learning for regional bird distribution mapping. Animals, 10(7), 1-24.en_US
dc.identifier.issn2076-2615
dc.identifier.urihttp://hdl.handle.net/20.500.12566/584
dc.description.abstractA challenging problem in the field of avian ecology is deriving information on bird population movement trends. This necessitates the regular counting of birds which is usually not an easily-achievable task. A promising attempt towards solving the bird counting problem in a more consistent and fast way is to predict the number of birds in different regions from their photos. For this purpose, we exploit the ability of computers to learn from past data through deep learning which has been a leading sub-field of AI for image understanding. Our data source is a collection of on-ground photos taken during our long run of birding activity. We employ several state-of-the-art generic object-detection algorithms to learn to detect birds, each being a member of one of the 38 identified species, in natural scenes. The experiments revealed that computer-aided counting outperformed the manual counting with respect to both accuracy and time. As a real-world application of image-based bird counting, we prepared the spatial bird order distribution and species diversity maps of Turkey by utilizing the geographic information system (GIS) technology. Our results suggested that deep learning can assist humans in bird monitoring activities and increase citizen scientists’ participation in large-scale bird surveys.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherAnimalsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer visionen_US
dc.subjectMachine learningen_US
dc.subjectBird detectionen_US
dc.subjectBird countingen_US
dc.subjectBird monitoringen_US
dc.subjectBird population mappingen_US
dc.subjectBird diversityen_US
dc.subjectGISen_US
dc.subjectCitizen scienceen_US
dc.subjectBilgisayarlı görmetr_TR
dc.subjectMakine öğrenmesitr_TR
dc.subjectKuş tespititr_TR
dc.subjectKuş sayımıtr_TR
dc.subjectKuş izlemetr_TR
dc.subjectKuş popülasyonu haritalandırmatr_TR
dc.subjectKuş çeşitliliğitr_TR
dc.subjectVatandaş bilimitr_TR
dc.titleAutomated bird counting with deep learning for regional bird distribution mappingen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:000557969400001
dc.identifier.scopus2-s2.0-85088028852
dc.identifier.volume10
dc.identifier.issue7
dc.identifier.startpage1
dc.identifier.endpage24
dc.contributor.orcid0000-0001-8453-2255 [Kabasakal, Bekir]
dc.contributor.abuauthorKabasakal, Bekir
dc.contributor.yokid314747 [Kabasakal, Bekir]
dc.contributor.ScopusAuthorID55330881700 [Kabasakal, Bekir]
dc.identifier.PubMedID32708550
dc.identifier.doi10.3390/ani10071207


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster