• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Anestezi Programı / Anesthesia Program
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Anestezi Programı / Anesthesia Program
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated bird counting with deep learning for regional bird distribution mapping

Thumbnail
Göster/Aç
Automated bird counting with deep learning for regional bird distribution mapping (2.189Mb)
Tarih
2020
Yazar
Akçay, Hüseyin Gökhan
Kabasakal, Bekir
Aksu, Duygugül
Demir, Nusret
Öz, Melih
Erdoğan, Ali
Üst veri
Tüm öğe kaydını göster
Özet
A challenging problem in the field of avian ecology is deriving information on bird population movement trends. This necessitates the regular counting of birds which is usually not an easily-achievable task. A promising attempt towards solving the bird counting problem in a more consistent and fast way is to predict the number of birds in different regions from their photos. For this purpose, we exploit the ability of computers to learn from past data through deep learning which has been a leading sub-field of AI for image understanding. Our data source is a collection of on-ground photos taken during our long run of birding activity. We employ several state-of-the-art generic object-detection algorithms to learn to detect birds, each being a member of one of the 38 identified species, in natural scenes. The experiments revealed that computer-aided counting outperformed the manual counting with respect to both accuracy and time. As a real-world application of image-based bird counting, we prepared the spatial bird order distribution and species diversity maps of Turkey by utilizing the geographic information system (GIS) technology. Our results suggested that deep learning can assist humans in bird monitoring activities and increase citizen scientists’ participation in large-scale bird surveys.
Bağlantı
http://hdl.handle.net/20.500.12566/584
Koleksiyonlar
  • Anestezi Programı / Anesthesia Program
  • PubMed İndeksli Yayınlar Koleksiyonu
  • Scopus İndeksli Yayınlar Koleksiyonu
  • WOS İndeksli Yayınlar Koleksiyonu

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.