Basit öğe kaydını göster

dc.contributor.authorTaheri, Shahram
dc.contributor.authorGolrizkhatami, Zahra
dc.contributor.authorBasabrain, Ammar A.
dc.contributor.authorHazzazi, Mohannad S
dc.date.accessioned2025-11-19T10:19:29Z
dc.date.available2025-11-19T10:19:29Z
dc.date.issued2024
dc.identifier.citationTaheri, S., Golrizkhatami, Z., Basabrain, A. A., & Hazzazi, M. S. (2024). A comprehensive study on classification of breast cancer histopathological images: Binary versus multi-category and magnification-specific versus magnification-independent. IEEE Access, 12, 50431–50443.en_US
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2360
dc.description.abstractThere are millions of cancer cases worldwide every year, and breast cancer is one of the most prevalent diseases with the highest mortality rate. The manual effort of pathologists can be significantly reduced by computerized diagnostic systems, which improve the accuracy and reliability of diagnosis. In this paper, we present four novel systems for breast cancer diagnosis in four different scenarios: binary versus multi-class classification and magnification-specific (MS) versus magnification-independent (MI) classification. In each of the proposed systems, we developed an automatic score-level fused CNN model using a pretrained deep neural network and named it the Multi-Level Feature Fusion (MLF2) model. The MLF2-CNN, similar to the conventional CNN models, integrates the feature extraction and classification phases of BC classification into a single automatic learning procedure. Additionally, MLF2-CNN performs an automatic score-level fusion of several classifiers that were trained with multi-level features to make the final decision. A pretrained DenseNet-121 is selected as the backbone of the proposed MLF2-CNN, and several new links are added to the CNN architecture to capture multi-stage features. Several experiments on the publicly available BreakHis dataset demonstrate that the proposed systems capture the best descriptive features and outperform state-of-the-art techniques in most of the scenarios.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherIEEE Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvolutional neural networken_US
dc.subjectEvrişimli sinir ağıtr_TR
dc.subjectBreast canceren_US
dc.subjectMeme kanseritr_TR
dc.subjectBreakHis dataseten_US
dc.subjectBreakHis veri kümesitr_TR
dc.subjectHistopathological imagesen_US
dc.subjectHistopatolojik görüntülertr_TR
dc.subjectScore-level fusionen_US
dc.subjectPuan düzeyinde füzyontr_TR
dc.subjectDirected acyclic graphen_US
dc.subjectYönlendirilmiş döngüsüz grafiktr_TR
dc.titleA comprehensive study on classification of breast cancer histopathological images: binary versus multi-category and magnification-specific versus magnification-independenten_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:001204926000001
dc.identifier.scopus2-s2.0-85190169531
dc.identifier.volume12en_US
dc.identifier.startpage50431en_US
dc.identifier.endpage50443en_US
dc.contributor.orcid0000-0002-7279-5565 [ Taheri, Shahram ]en_US
dc.contributor.orcid0000-0003-2631-4561 [ Golrizkhatami, Zahra ]
dc.contributor.abuauthorGolrizkhatami, Zahra
dc.contributor.abuauthorTaheri, Shahram
dc.contributor.yokid303601 [ Taheri, Shahram ]en_US
dc.contributor.yokid345908 [ Golrizkhatami, Zahra ]
dc.contributor.ScopusAuthorID57203040190 [ Golrizkhatami, Zahra ]
dc.contributor.ScopusAuthorID57203004456 [ Taheri, Shahram ]
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2024.3386355en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster