• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comprehensive study on classification of breast cancer histopathological images: binary versus multi-category and magnification-specific versus magnification-independent

Thumbnail
Göster/Aç
A comprehensive study on classification of breast cancer histopathological images: binary versus multi-category and magnification-specific versus magnification-independent.pdf (2.945Mb)
Tarih
2024
Yazar
Taheri, Shahram
Golrizkhatami, Zahra
Basabrain, Ammar A.
Hazzazi, Mohannad S
Üst veri
Tüm öğe kaydını göster
Özet
There are millions of cancer cases worldwide every year, and breast cancer is one of the most prevalent diseases with the highest mortality rate. The manual effort of pathologists can be significantly reduced by computerized diagnostic systems, which improve the accuracy and reliability of diagnosis. In this paper, we present four novel systems for breast cancer diagnosis in four different scenarios: binary versus multi-class classification and magnification-specific (MS) versus magnification-independent (MI) classification. In each of the proposed systems, we developed an automatic score-level fused CNN model using a pretrained deep neural network and named it the Multi-Level Feature Fusion (MLF2) model. The MLF2-CNN, similar to the conventional CNN models, integrates the feature extraction and classification phases of BC classification into a single automatic learning procedure. Additionally, MLF2-CNN performs an automatic score-level fusion of several classifiers that were trained with multi-level features to make the final decision. A pretrained DenseNet-121 is selected as the backbone of the proposed MLF2-CNN, and several new links are added to the CNN architecture to capture multi-stage features. Several experiments on the publicly available BreakHis dataset demonstrate that the proposed systems capture the best descriptive features and outperform state-of-the-art techniques in most of the scenarios.
Bağlantı
http://hdl.handle.net/20.500.12566/2360
Koleksiyonlar
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.