• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Tıbbi Laboratuvar Teknikleri Programı / Medical Laboratory Tecniques Program
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Tıbbi Laboratuvar Teknikleri Programı / Medical Laboratory Tecniques Program
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hazard assessment of the effects of acute and chronic exposure to permethrin, copper hydroxide, acephate, and validamycin nanopesticides on the physiology of drosophila: novel insights into the cellular internalization and biological effects

Thumbnail
View/Open
Hazard assessment of the effects of acute and chronic exposure to permethrin, copper hydroxide, acephate, and validamycin nanopesticides on the physiology of drosophila novel insights into the cellular internaliz.pdf (7.380Mb)
Date
2022
Author
Demir, Eşref
Kansız, Seyithan
Doğan, Mehmet
Topel, Önder
Akkoyunlu, Gökhan
Kandur, Muhammed Yusuf
Turna Demir, Fatma
Metadata
Show full item record
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.
URI
http://hdl.handle.net/20.500.12566/1285
Collections
  • Tıbbi Laboratuvar Teknikleri Programı / Medical Laboratory Tecniques Program

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.