• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • İnşaat Mühendisliği Bölümü / Department of Civil Engineering
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • İnşaat Mühendisliği Bölümü / Department of Civil Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new spatial estimation model and source apportionment of aliphatic hydrocarbons in coastal surface sediments of the Nayband Bay, Persian Gulf

Thumbnail
View/Open
A new spatial estimation model and source apportionment of aliphatic hydrocarbons in coastal surface sediments of the Nayband Bay, Persian Gulf (3.577Mb)
Date
2023
Author
Partani, Sadegh
Danandeh Mehr, Ali
Maghrebi, Mohsen
Mokhtari, Rouzbeh
Nachtnebel, Hans-Peter
Taniwaki, Ricardo Hideo
Arzhangi, Amin
Metadata
Show full item record
Abstract
Hydrocarbons, originating from oil and gas industries, are considered a potential risk for Nayband Bay, a natural marine park with extended mangroves, located on the north coastlines of the Persian Gulf, Iran. This paper determines the potential sources and spatial distribution of hydrocarbons, especially aliphatic hydrocarbons (AHCs), in Nayband Bay through the simultaneous application of three indices in the coastline surface sediments. To this end, a field study was conducted in the inter-tidal coastal zones and wetlands. Sediment samples were taken from surface layers along four transects with four sampling points at different distances from the gulf. The hydrocarbon compounds of the samples including AHCs, total petroleum hydrocarbons, and heavy metals (Ni, V as crude oil indicators) were analyzed and classified to discover the pollution indicators. Pearson pairwise correlation and cluster analyses along with pollution indices were employed to describe the spatial distribution pattern of hydrocarbons, identify hot spots, and determine the potential origin of AHCs. Different interpolation scenarios based on topographic and oceanic features were proposed to detect the spatial dynamics of AHCs. The results revealed that hydrocarbons mainly originated from anthropogenic sources including oil and gas industries located far from the affected area. It was also concluded that the long-distance pollution transfer was based on oceanic currents and wind direction in the bay. The proposed scenarios showed that the mean concentration values of total organic carbon and total organic material vary in the range of 0.19 ppm to 0.4 ppm and 2.88 ppm to 3.20 ppm, respectively.
URI
http://hdl.handle.net/20.500.12566/1836
Collections
  • İnşaat Mühendisliği Bölümü / Department of Civil Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.