• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Turizm Fakültesi / Faculty of Tourism
  • Gastronomi ve Mutfak Sanatları Bölümü / Department of Gastronomy & Culinary Arts
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Turizm Fakültesi / Faculty of Tourism
  • Gastronomi ve Mutfak Sanatları Bölümü / Department of Gastronomy & Culinary Arts
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tips and trips: a structural model of guests’ intentions to stay and tip for AI-based services in hotels

Thumbnail
Tarih
2023
Yazar
Morosan, Cristian
Dursun Cengizci, Aslıhan
Üst veri
Tüm öğe kaydını göster
Özet
Purpose-Given the rapid development in artificial intelligence (AI), the hotel industry is deploying AI-based systems. In line with this important development, this study aims to examine the impact of trust in the hotel and AI-related performance ambiguity on consumers’ engagement with AI-based systems. This study ultimately examined the impact of engagement on consumers’ intentions to stay in hotels offering such systems, and intentions to tip. Design/methodology/approach-This study developed a conceptual model based on the social cognition theory. The study used an online survey methodology and collected data from a nationwide sample of 400 hotel consumers from the USA. The data analysis was conducted with structural equation modeling. Findings-Consumers’ engagement is strongly influenced by their trust in the hotel but not by performance ambiguity associated with AI. In turn, engagement strongly influenced consumers’ intentions to stay in hotels that have such systems and their intentions to tip. Originality/value-As AI systems capable of making decisions for consumers are becoming increasingly present in hotels, little is known about the way consumers engage with such systems and whether their engagement leads to economic impact. This is the first study that validated a model that explains intentions to stay and tip for services facilitated by autonomous AI-based systems that can make decisions for consumers.
Bağlantı
http://hdl.handle.net/20.500.12566/1924
Koleksiyonlar
  • Gastronomi ve Mutfak Sanatları Bölümü / Department of Gastronomy & Culinary Arts

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.