Show simple item record

dc.contributor.authorSafari, Mir Jafar Sadegh
dc.contributor.authorDanandeh Mehr, Ali
dc.date.accessioned2019-09-25T12:22:45Z
dc.date.available2019-09-25T12:22:45Z
dc.date.issued2018
dc.identifier.citationSafari, M. J. S., & Danandeh Mehr, A. (2018). Multigene genetic programming for sediment transport modeling in sewers for conditions of non deposition with a bed deposit. International Journal of Sediment Research, 33, 262-270.en_US
dc.identifier.issn1001-6279
dc.identifier.urihttp://hdl.handle.net/20.500.12566/69
dc.description.abstractIt is known that construction of large sewers based on consideration of flow with non-deposition without a bed deposit is not economical. Sewer design based on consideration of flow with non-deposition with a bed deposit reduces channel bed slope and construction cost in which the presence of a small depth of sediment deposition on the bed increases the sediment transport capacity of the flow. This paper suggests a new Pareto-optimal model developed by the multigene genetic programming (MGGP) technique to estimate particle Froude number (Frp) in large sewers with conditions of sediment deposition on the bed. To this end, four data sets including wide ranges of sediment size and concentration, deposit thickness, and pipe size are used. On the basis of different statistical performance indices, the efficiency of the proposed Pareto-optimal MGGP model is compared to those of the best MGGP model developed in the current study as well as the conventional regression models available in the literature. The results indicate the higher efficiency of the MGGP-based models for Frp estimation in the case of no additional deposition onto a bed with a sediment deposit. Inasmuch as the Pareto-optimal MGGP model utilizes a lower number of input parameters to yield comparatively higher performance than the conventional regression models, it can be used as a parsimonious model for self-cleansing design of large sewers in practice.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBed loaden_US
dc.subjectBed depositionen_US
dc.subjectNon-depositionen_US
dc.subjectMultigene genetic programmingen_US
dc.subjectSediment transporten_US
dc.subjectSeweren_US
dc.subjectYatak yükütr_TR
dc.subjectYatak biriktirmetr_TR
dc.subjectSigara birikimitr_TR
dc.subjectMultigen genetik programlamatr_TR
dc.subjectSediment taşınımıtr_TR
dc.subjectKanalizasyontr_TR
dc.titleMultigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed depositen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:000443198500005
dc.identifier.scopus2-s2.0-85046723844
dc.identifier.volume33
dc.identifier.startpage262
dc.identifier.endpage270
dc.contributor.orcid0000-0003-2769-106X [Danandeh Mehr, Ali]
dc.contributor.abuauthorDanandeh Mehr, Ali
dc.contributor.yokid275430 [Danandeh Mehr, Ali]
dc.contributor.ScopusAuthorID55899085700 [Danandeh Mehr, Ali]
dc.identifier.PubMedID31823028
dc.identifier.doi10.1016/j.ijsrc.2018.04.007


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record