dc.contributor.author | Ghorbani, Mohammad Ali | |
dc.contributor.author | Rahman, Khatibi | |
dc.contributor.author | Danandeh Mehr, Ali | |
dc.contributor.author | Hakimeh, Asadi | |
dc.date.accessioned | 2019-09-25T12:16:33Z | |
dc.date.available | 2019-09-25T12:16:33Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Ghorbani, M. A., Khatibi, R., Danandeh Mehr, A. & Asadi, H. (2018). Chaos based multigene genetic programming: a new hybrid strategy for river flow forecasting. Journal of Hydrology, 562, 455-467. | en_US |
dc.identifier.issn | 0022-1694 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12566/68 | |
dc.description.abstract | Chaos theory is integrated with Multi-Gene Genetic Programming (MGGP) engine as a new hybrid model for river flow forecasting. This is to be referred to as Chaos-MGGP and its performance is tested using daily historic flow time series at four gauging stations in two countries with a mix of both intermittent and perennial rivers. Three models are developed: (i) Local Prediction Model (LPM); (ii) standalone MGGP; and (iii) Chaos-MGGP, where the first two models serve as the benchmark for comparison purposes. The Phase-Space Reconstruction (PSR) parameters of delay time and embedding dimension form the dominant input signals derived from original time series using chaos theory and these are transferred to Chaos-MGGP. The paper develops a procedure to identify global optimum values of the PSR parameters for the construction of a regression-type prediction model to implement the Chaos-MGGP model. The inter-comparison of the results at the selected four gauging stations shows that the Chaos-MGGP model provides more accurate forecasts than those of stand-alone MGGP or LPM models. | en_US |
dc.description.sponsorship | No sponsor | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Chaos theory | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Hybrid models | en_US |
dc.subject | Multigene genetic programming (MGGP) | en_US |
dc.subject | Phase-Space Reconstruction (PSR) | en_US |
dc.subject | River flow | en_US |
dc.subject | Kaos teorisi | tr_TR |
dc.subject | Tahmin | tr_TR |
dc.subject | Hibrit modelleri | tr_TR |
dc.subject | Multijen genetik programlama (MGGP) | tr_TR |
dc.subject | Faz-Uzay Yeniden Yapılanma (PSR) | tr_TR |
dc.subject | Nehir akışı | tr_TR |
dc.title | Chaos-based multigene genetic programming: a new hybrid strategy for river flow forecasting | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.publicationcategory | International publication | en_US |
dc.identifier.wos | WOS:000438003000035 | |
dc.identifier.scopus | 2-s2.0-85047100891 | |
dc.identifier.volume | 562 | |
dc.identifier.startpage | 455 | |
dc.identifier.endpage | 467 | |
dc.contributor.orcid | 0000-0003-2769-106X [Danandeh Mehr, Ali] | |
dc.contributor.abuauthor | Danandeh Mehr, Ali | |
dc.contributor.yokid | 275430 [Danandeh Mehr, Ali] | |
dc.contributor.ScopusAuthorID | 55899085700 [Danandeh Mehr, Ali] | |
dc.identifier.doi | 10.1016/j.jhydrol.2018.04.054 | |