Basit öğe kaydını göster

dc.contributor.authorDanandeh Mehr, Ali
dc.contributor.authorBagheri, Farzaneh
dc.contributor.authorReşatoğlu, Rifat
dc.contributor.editorAliev, Rafik A.
dc.contributor.editorKacprzyk, Janusz
dc.contributor.editorPedrycz, Witold
dc.contributor.editorJamshidi, Mo
dc.contributor.editorSadıkoğlu, Fahreddin M.
dc.date.accessioned2019-09-25T06:21:30Z
dc.date.available2019-09-25T06:21:30Z
dc.date.issued2019
dc.identifier.citationDanandeh Mehr, A., Bagheri, F. & Reşatoğlu, R. (2019). A genetic programming approach to forecast daily electricity demand. Aliev, R. A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Sadıkoğlu, F. M. (Ed.), 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing - ICAFS-2018. Berlin: Springer.en_US
dc.identifier.isbn9783030041632
dc.identifier.urihttp://hdl.handle.net/20.500.12566/61
dc.identifier.urihttps://doi.org/10.1007/978-3-030-04164-9_41
dc.descriptionInternational Conference on Theory and Application of Fuzzy Systems and Soft Computing - ICAFS-2018 (13. : 2019 : Warsaw, Poland)
dc.description.abstractA number of recent researches have compared machine learning techniques to find more reliable approaches to solve variety of engineering problems. In the present study, capability of canonical genetic programming (GP) technique to model daily electrical energy consumption (ED) as an alternative for electrical demand prediction was investigated. For this aim, using the most recent ED data recorded at northern part of Nicosia, Cyprus, we put forward two daily prediction scenarios subjected to train and validate by GPdotNET, an open source GP software. Minimizing root mean square error between the modeled and observed data as the objective function, the best prediction model at each scenario has been presented for the city. The results indicated the promising role of GP for daily ED prediction in Nicosia, however it suffers from lagged prediction that must be considered in practical application.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherSpringer Nature Switzerland AGen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGenetic programmingen_US
dc.subjectElectricity demanden_US
dc.subjectTime series analysisen_US
dc.subjectGenetik programlamatr_TR
dc.subjectElektrik talebitr_TR
dc.subjectZaman serisi analizitr_TR
dc.titleA genetic programming approach to forecast daily electricity demanden_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:000461058100041
dc.identifier.startpage301
dc.identifier.endpage308
dc.contributor.orcid0000-0003-2769-106X [Danandeh Mehr, Ali]
dc.contributor.abuauthorDanandeh Mehr, Ali
dc.contributor.yokid275430 [Danandeh Mehr, Ali]


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster