Structure of conflict graphs in constraint alignment problems and algorithms
Tarih
2019Yazar
Alkan, Ferhat
Bıyıkoğlu, Türker
Demange, Marc
Erten, Cesim
Üst veri
Tüm öğe kaydını gösterÖzet
We consider the constrained graph alignment problem which has applications in biological network analysis. Given two input graphs G1 = (V1, E1), G2 = (V2, E2), two vertices u1, v1 of G1 paired respectively to two vertices u2, v2 of G2 induce an edge conservation if u1, v1 and u2, v2 are adjacent in their respective graphs. The goal is to provide a one-to-one mapping between some vertices of the input graphs in order to maximize edge conservation. However the allowed mappings are restricted since each vertex from V1 (resp. V2) is allowed to be mapped to at most m1 (resp. m2) specified vertices in V2 (resp. V1). Most of the results in this paper deal with the case m2 = 1 which attracted most attention in the related literature. We formulate the problem as a maximum independent set problem in a related conflict graph and investigate structural properties of this graph in terms of forbidden subgraphs. We are interested, in particular, in excluding certain wheels, fans, cliques or claws (all terms are defined in the paper), which in turn
corresponds to excluding certain cycles, paths, cliques or independent sets in the neighborhood of each vertex. Then, we investigate algorithmic consequences of some of these properties, which illustrates the potential of this approach and raises new horizons for further works. In particular this approach allows us to reinterpret a known polynomial case in terms of conflict graph and to improve known approximation and fixed-parameter tractability results through efficiently solving the maximum independent set problem in conflict graphs. Some of our new approximation results
involve approximation ratios that are functions of the optimal value, in particular its square root; this kind of results cannot be achieved for maximum independent set in general graphs.
İlgili Öğeler
Başlık, yazar, küratör ve konuya göre gösterilen ilgili öğeler.
-
Efficient domination in Cayley graphs of generalized dihedral groups
Çalışkan, Cafer; Miclavic, Stefko; Özkan, Sibel; Sparl, Primoz (Discussiones Mathematicae Graph Theory, 2020)An independent subset D of the vertex set V of the graph is an effcient dominating set for this graph if each vertex v in V \ D has precisely one neighbour in D. In this article, we classify the connected cubic Cayley ... -
Domination and efficient domination in cubic and quartic Cayley graphs on abelian groups
Çalışkan, Cafer; Miklavic, Stefko; Özkan, Sibel (Discrete Applied Mathematics, 2019)In this paper, we characterise cubic and quartic Cayley graphs on abelian groups that admit an efficient dominating set, and then we give domination numbers, even when they do not have an efficient dominating set, when it ... -
Ranking cancer drivers via betweenness-based outlier detection and random walks
Houdjedj, Aissa (Antalya Bilim Üniversitesi Lisansüstü Eğitim Enstitüsü, 2021)Recent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. We propose BetweenNet, a ...












