Basit öğe kaydını göster

dc.contributor.authorTaheri, Shahram
dc.contributor.authorGolrizkhatami, Zahra
dc.date.accessioned2025-11-19T10:59:56Z
dc.date.available2025-11-19T10:59:56Z
dc.date.issued2023
dc.identifier.citationTaheri, S., & Golrizkhatami, Z. (2023). Magnification-specific and magnification-independent classification of breast cancer histopathological images using deep learning approaches. Signal, Image and Video Processing, 17, 583–591.en_US
dc.identifier.issn1863-1711
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2362
dc.description.abstractBreast cancer (BC) is a massive health problem and a deadly disease, killing millions of people every year. Computerized approaches for automated malignant BC detection can efficiently help in reducing the manual workload of pathologists and making diagnosis more scalable and less prone to errors. In this paper, we present two systems to diagnose breast cancer from single and multi-magnification histopathological images. The first proposed system utilizes a pre-trained DenseNet201 CNN architecture and fine-tuned over the publicly available BreakHis dataset and classifies histopathological images of specific magnification factors into one of the benign or malignant classes. The second system consists of four subsystems, each corresponding to one of the magnifications, and is trained only by related magnification images. Afterwards, the results obtained from these four subsystems are fused together to make the final decision. Several experiments on BreakHis dataset demonstrate that the proposed systems outperform the state-of-the-art approaches, in all cases.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherSpringer Londonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBreakHis dataseten_US
dc.subjectBreakHis veri setitr_TR
dc.subjectBreast canceren_US
dc.subjectMeme kanseritr_TR
dc.subjectComputer-aided diagnosisen_US
dc.subjectBilgisayar destekli tanıtr_TR
dc.subjectConvolutional neural networken_US
dc.subjectKonvolüsyonel sinir ağıtr_TR
dc.subjectHistopathological imagesen_US
dc.subjectHistopatolojik görüntülertr_TR
dc.subjectTransfer learningen_US
dc.subjectTransfer öğrenimitr_TR
dc.titleMagnification-specific and magnification-independent classification of breast cancer histopathological image using deep learning approachesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:000808402600002
dc.identifier.scopus2-s2.0-85131524227
dc.identifier.volume17en_US
dc.identifier.issue2en_US
dc.identifier.startpage583en_US
dc.identifier.endpage591en_US
dc.contributor.orcid0000-0003-2631-4561 [ Golrizkhatami, Zahra ]
dc.contributor.orcid0000-0002-7279-5565 [ Taheri, Shahram ]
dc.contributor.abuauthorTaheri, Shahram
dc.contributor.abuauthorGolrizkhatami, Zahra
dc.contributor.yokid345908 [ Golrizkhatami, Zahra ]
dc.contributor.yokid303601 [ Taheri, Shahram ]
dc.contributor.ScopusAuthorID57203004456 [ Taheri, Shahram ]
dc.contributor.ScopusAuthorID57203040190 [ Golrizkhatami, Zahra ]
dc.identifier.doihttps://doi.org/10.1007/s11760-022-02263-7en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster