Basit öğe kaydını göster

dc.contributor.authorTaheri, Shahram
dc.contributor.authorGolrizkhatami, Zahra
dc.contributor.authorSivri, Mustan Barış
dc.contributor.authorKırzıoğlu Ercan, Rukiye Gözde
dc.contributor.authorYağcı, Ünsun
dc.date.accessioned2025-11-19T10:41:27Z
dc.date.available2025-11-19T10:41:27Z
dc.date.issued2024
dc.identifier.citationSivri, M. B., Taheri, S., Kırzıoğlu Ercan, R. G., Yağcı, Ü., & Golrizkhatami, Z. (2024). Dental age estimation: A comparative study of convolutional neural network and Demirjian’s method. Journal of Forensic and Legal Medicine, 103, 102679.en_US
dc.identifier.issn1752-928X
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2361
dc.description.abstractThe aim of this study is to compare a technique using Convolutional Neural Network (CNN) with the Demirjian's method for chronological age estimation of living individuals based on tooth age from panoramic radiographs. This research used 5898 panoramic X-ray images collected for diagnostic from pediatric patients aged 4–17 who sought treatment at Antalya Oral and Dental Health Hospital between 2015 and 2020. The Demirjian's method's grading was executed by researchers who possessed appropriate training and experience. In the CNN method, various CNN architectures including Alexnet, VGG16, ResNet152, DenseNet201, InceptionV3, Xception, NASNetLarge, InceptionResNetV2, and MobieNetV2 have been evaluated. Densenet201 exhibited the lowest MAE value of 0.73 years, emphasizing its superior accuracy in age estimation compared to other architectures. In most age categories, the predicted age closely matches the actual age. The most inconsistent results are observed at ages 12 and 13. The results highlight correspondence between the age predicted by CNN and the Demirjian's approach. In conclusion, the results show that the CNN method is adequate to be an alternative to the Demirjian's age estimation method. We suggest that convolutional neural network can effectively optimize the accuracy of age estimation and can be faster than traditional methods, eliminating the need for additional learning from experts.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoEngen_US
dc.publisherChurchill Livingstoneen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAge estimationen_US
dc.subjectYaş tahminitr_TR
dc.subjectPanoramic radiographen_US
dc.subjectPanoramik radyografitr_TR
dc.subjectConvolutional neural networken_US
dc.subjectEvrişimli sinir ağıtr_TR
dc.titleDental age estimation: A comparative study of convolutional neural network and Demirjian's methoden_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:001222841300001
dc.identifier.scopus2-s2.0-85189024530
dc.identifier.volume103en_US
dc.identifier.startpage1
dc.identifier.endpage7
dc.contributor.orcid0000-0003-2631-4561 [ Golrizkhatami, Zahra ]
dc.contributor.orcid0000-0002-7279-5565 [ Taheri, Shahram ]
dc.contributor.abuauthorTaheri, Shahram
dc.contributor.abuauthorGolrizkhatami, Zahra
dc.contributor.yokid345908 [ Golrizkhatami, Zahra ]
dc.contributor.yokid303601 [ Taheri, Shahram ]
dc.contributor.ScopusAuthorID57203004456 [ Taheri, Shahram ]
dc.contributor.ScopusAuthorID57203040190 [ Golrizkhatami, Zahra ]
dc.identifier.PubMedID38537363
dc.identifier.doihttps://doi.org/10.1016/j.jflm.2024.102679en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster