Show simple item record

dc.contributor.authorShakhmurov, Veli
dc.contributor.author·Shahmurov, Rishad
dc.date.accessioned2025-11-04T10:33:50Z
dc.date.available2025-11-04T10:33:50Z
dc.date.issued2024
dc.identifier.citationShakhmurov, V., & Shahmurov, R. (2024). Well-posedness of nonlocal Ginzburg–Landau type equations. European Journal of Mathematics, 10(4), Article 57. https://doi.org/10.1007/s40879-024-00772-yen_US
dc.identifier.issn2199-675X
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2332
dc.description.abstractThe Cauchy problem for linear and nonlinear Ginzburg-Landau type equations is studied. The equation includes variable coefficients with convolution terms. Assuming enough smoothness of the initial data and certain growth conditions on coefficients, the existence, uniqueness of local and global solution,Lp-regularity, and blow-up properties of solutions are establisheden_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherEuropean Journal of Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDiffusion equationsen_US
dc.subjectDifüzyon denklemleritr_TR
dc.subjectGinzburg-Landau equationen_US
dc.subjectGinzburg-Landau denklemitr_TR
dc.subjectEmbedding in Sobolev spacesen_US
dc.subjectSobolev uzaylarında gömmetr_TR
dc.subjectFourier multipliersen_US
dc.subjectFourier çarpanlarıtr_TR
dc.titleWell-posedness of nonlocal Ginzburg–Landau type equationsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:001335789900001
dc.identifier.scopus2-s2.0-85206368950
dc.identifier.volume10
dc.identifier.issue4
dc.contributor.abuauthorShakhmurov, Veli
dc.contributor.yokid0000-0002-7685-4913 [Shakhmurov, Veli]
dc.contributor.yokid126037 [Shakhmurov, Veli]
dc.contributor.ScopusAuthorID6508234400 [Shakhmurov, Veli]
dc.identifier.doi10.1007/s40879-024-00772-y


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record