Basit öğe kaydını göster

dc.contributor.authorAyan Şengül, Sevgi
dc.contributor.authorKaya, Ümran
dc.contributor.authorAkay, Diyar
dc.date.accessioned2025-10-30T16:55:37Z
dc.date.available2025-10-30T16:55:37Z
dc.date.issued2024
dc.identifier.citationKaya, Ü., Akay, D., & Ayan, S. Ş. (2024). EEG-based emotion recognition in neuromarketing using fuzzy linguistic summarization. IEEE Transactions on Fuzzy Systems, 32(8), 4248–4259.en_US
dc.identifier.issn1063-6706
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2307
dc.description.abstractIn recent years, to increase market share, companies have preferred neuromarketing over traditional methods for better analysis of consumer behavior. Since it easily detects customers' subconscious preferences, electroencephalography (EEG), a brain imaging method, has become widespread within neuromarketing techniques. To make sense of EEG signals, dimensional models are used to convert them into emotions. These steps can reveal emotions and preferences easily but still require an expert for detailed stimulus analysis. This article proposed a fuzzy linguistic summarization approach to provide a decision support tool aimed at presenting detailed analysis to neuromarketing experts. EEG signals were recorded to analyze a hotel's three (audio, video, web page) advertisements (ads). These were converted into fuzzy emotion labels in a modified Russell's circumplex model for more specific analysis. Then, these emotion labels were used in linguistic summarization. EEG data were handled in three types: univariate, multivariate, and multigranular detected time series. Each ad was summarized according to demographic features, such as gender and age, allowing comparisons between ads and their segments. The granular trend detection algorithm was modified to detect the simultaneous effects of ads. This study will inspire future studies with three innovations: fuzzy linguistic summarization technique in neuromarketing, fuzzy emotion recognition, and a modified multigranular trend detection algorithm that detects simultaneous agglomeration that is often overlooked.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectroencephalographyen_US
dc.subjectElektroensefalografitr_TR
dc.subjectNeuromarketingen_US
dc.subjectNöropazarlamatr_TR
dc.subjectBrain modelingen_US
dc.subjectBeyin modellemetr_TR
dc.subjectEmotion recognitionen_US
dc.subjectDuygu tanımatr_TR
dc.subjectLinguisticsen_US
dc.subjectDilbilimtr_TR
dc.subjectFuzzy logicen_US
dc.subjectBulanık mantıktr_TR
dc.subjectData modelsen_US
dc.subjectVeri modelleritr_TR
dc.titleEEG-based emotion recognition in neuromarketing using fuzzy linguistic summarizationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.scopus2-s2.0-85191310690
dc.identifier.volume32en_US
dc.identifier.issue8en_US
dc.identifier.startpage4248en_US
dc.identifier.endpage4259en_US
dc.contributor.orcid0000-0002-8211-2908 [Kaya, Ümran]en_US
dc.contributor.orcid0000-0003-0083-4446 [Ayan Şengül, Sevgi]
dc.contributor.abuauthorKaya, Ümran
dc.contributor.abuauthorAyan Şengül, Sevgi
dc.contributor.yokid258142 [Kaya, Ümran]
dc.contributor.yokid236492 [Ayan Şengül, Sevgi]
dc.identifier.doi10.1109/tfuzz.2024.3392495en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster