dc.contributor.author | Ülgen, Semail | |
dc.date.accessioned | 2025-05-12T15:54:33Z | |
dc.date.available | 2025-05-12T15:54:33Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Ülgen, S. (2024). On a non-Riemannian quantity of (α, β)-metrics. Sigma Journal of Engineering and Natural Sciences, 42(2), 566-571. | en_US |
dc.identifier.issn | 1304-7191 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12566/2222 | |
dc.description.abstract | In this paper, we study a non-Riemannian quantity χ-curvature of (α, β)-metrics, a special class of Finsler metrics with Riemannian metric α and a 1-form β. We prove that every (α, β)-metric has a vanishing χ-curvature under certain conditions. | en_US |
dc.description.sponsorship | No sponsor | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Sigma Journal of Engineering and Natural Sciences | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Finsler metric | en_US |
dc.subject | Finsler metriği | tr_TR |
dc.subject | Vanishing χ-curvature | en_US |
dc.subject | Kaybolan χ-eğriliği | tr_TR |
dc.subject | Non-Riemannian quantity | en_US |
dc.subject | Riemann dışı nicelik | tr_TR |
dc.title | On a non-Riemannian quantity of (α, β)-Metrics | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.publicationcategory | International publication | en_US |
dc.identifier.wos | WOS:001218832500008 | |
dc.identifier.volume | 42 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 566 | |
dc.identifier.endpage | 571 | |
dc.contributor.orcid | 0000-0003-1381-1577 [Ülgen, Semail] | |
dc.contributor.abuauthor | Ülgen, Semail | |
dc.contributor.yokid | 19314 [Ülgen, Semail] | |
dc.identifier.doi | 10.14744/sigma.2023.00127 | |