Basit öğe kaydını göster

dc.contributor.authorAltunhan, İsmail
dc.contributor.authorSakin, Mehmet
dc.contributor.authorKaya, Ümran
dc.contributor.authorAk, Muhammet Fatih
dc.date.accessioned2025-04-28T12:44:32Z
dc.date.available2025-04-28T12:44:32Z
dc.date.issued2023
dc.identifier.citationAltunhan, İ., Sakin, M., Kaya, Ü., Fatih AK, M. (2023). Strategic Framework for ANFIS and BIM Use on Risk Management at Natural Gas Pipeline Project. In: Smart Applications with Advanced Machine Learning and Human-Centred Problem Design. ICAIAME 2021. Engineering Cyber-Physical Systems and Critical Infrastructures, vol 1. Springer, Cham.en_US
dc.identifier.isbn978-3-031-09752-2
dc.identifier.isbn978-3-031-09753-9
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2189
dc.description.abstractRisk management is a multi-criteria decision making problem that includes various factors according to literature research and expert opinions. In order to solve the relationship between these criteria and to establish effective models, researchers have presented a wide variety of methods or models in the literature. In order to manage risk management effectively and to minimize its impact on project parameters, the most appropriate methods and criteria and strategic selection are required. In this article, a case study conducted using the multi-criteria Adaptive Neuro-Fuzzy Inference System (ANFIS), which enables the grading of 40 real risk types covering the design and construction processes of projects, is examined. Combining the structures and advantages of adaptive networks with fuzzy inference methodology has demonstrated a more comprehensive and effective risk management and assessment. Root mean square error (RMSE), mean absolute percentage error (MAPE) and R2 performance indicators have shown that the artificial intelligence supported risk management approach created with the Adaptive Neuro Fuzzy Inference System gives better results. The main contribution of this study is the approach of artificial intelligence to accurately assess and grade risks with the hybrid learning method, and then assign linguistic expressions and warning texts on risk items using 3D BIM and FLS (fuzzy linguistic summarization) systems.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRisk Managementen_US
dc.subjectNeural Fuzzy Logicen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectAdaptive Network Based Fuzzy Inference System (ANFIS)en_US
dc.subjectRisk yönetimien_TR
dc.subjectSinirsel bulanık mantıken_TR
dc.subjectYapay sinir ağlarıen_TR
dc.subjectUyarlanabilir ağ tabanlı bulanık çıkarım sistemi (ANFIS)en_TR
dc.titleStrategic framework for ANFIS and BIM use on risk management at natural gas pipeline projecten_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.startpage113en_US
dc.identifier.endpage127en_US
dc.contributor.orcid0000-0002-8211-2908 [Kaya, Ümran]
dc.contributor.orcid0000-0003-4342-296X [Ak, Muhammet Fatih]
dc.contributor.abuauthorKaya, Ümran
dc.contributor.abuauthorAk, Muhammet Fatih
dc.contributor.yokid258142 [Kaya, Ümran]
dc.contributor.yokid279243 [Ak, Muhammet Fatih]
dc.identifier.doi10.1007/978-3-031-09753-9_8en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster