Show simple item record

dc.contributor.authorÖzdoğan, Hasan
dc.contributor.authorÜncü, Yiğit Ali
dc.contributor.authorŞekerci, Mert
dc.contributor.authorKaplan, Abdullah
dc.date.accessioned2024-02-13T07:37:46Z
dc.date.available2024-02-13T07:37:46Z
dc.date.issued2024
dc.identifier.citationÖzdoğan, H., Üncü, Y. A., Şekerci, M. & Kaplan, A. (2024). Neural network predictions of (α, n) reaction cross sections at 18.5±3 MeV using the Levenberg-Marquardt algorithm. Applied Radiation and Isotopes, 204.en_US
dc.identifier.issn0969-8043
dc.identifier.urihttp://hdl.handle.net/20.500.12566/1880
dc.description.abstractIn recent developments, artificial neural networks (ANNs) have demonstrated their capability to predict reaction cross-sections based on experimental data. Specifically, for predicting (a,n) reaction cross-sections, we meticulously fine-tuned the neural network’s performance by optimizing its parameters through the Levenberg-Marquardt algorithm. The effectiveness of this approach is corroborated by notable correlation coefficients; an R-value of 0.90928 for overall correlation, 0.98194 for validation, 0.99981 for testing, and 0.94116 for the comprehensive network prediction. We conducted a rigorous comparison between the results and theoretical computations derived from the TALYS 1.95 nuclear code to validate the predictive accuracy. The mean square error value for artificial neural network results is 7620.92, whereas for TALYS 1.95 calculations, it has been found to be 50,312.74. This comprehensive evaluation process validates the reliability of the ANN based on the Levenberg-Marquardt algorithm in approximating the reaction sections, thus demonstrating its potential for comprehensive investigations. These recent developments confirm the feasibility of using ANN models to gain insight into (a,n) reaction cross-sectionsen_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectCross-sectionsen_US
dc.subjectTesir Kesititr_TR
dc.subject(α,n) reactionen_US
dc.subject(α,n) reaksiyonutr_TR
dc.subjectLevenberg-Marquardt algorithmen_US
dc.subjectLevenberg-Marquardt algoritmasıtr_TR
dc.subjectANNen_US
dc.subjectTALYSen_US
dc.titleNeural network predictions of (α, n) reaction cross sections at 18.5±3 MeV using the Levenberg-Marquardt algorithmen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:001127037500001
dc.identifier.volume204
dc.contributor.orcid0000-0001-6127-9680 [Özdoğan, Hasan]
dc.contributor.abuauthorÖzdoğan, Hasan
dc.contributor.yokid116763 [Özdoğan, Hasan]
dc.relation.journalApplied Radiation and Isotopesen_US
dc.identifier.PubMedID38006780
dc.identifier.doi10.1016/j.apradiso.2023.111115


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record