Show simple item record

dc.contributor.authorAchite, Mohammed
dc.contributor.authorGul, Enes
dc.contributor.authorElshaboury, Nehal
dc.contributor.authorJehanzaib, Muhammad
dc.contributor.authorMohammadi, Babak
dc.contributor.authorDanandeh Mehr, Ali
dc.date.accessioned2023-11-16T12:18:50Z
dc.date.available2023-11-16T12:18:50Z
dc.date.issued2023
dc.identifier.citationAchite, M., Gul, E., Elshaboury, N., Jehanzaib, M., Mohammadi, B., & Mehr, A. D. (2023). An improved adaptive neuro-fuzzy inference system for hydrological drought prediction in algeria. Physics and Chemistry of the Earth, 131.en_US
dc.identifier.issn1474-7065
dc.identifier.urihttp://hdl.handle.net/20.500.12566/1821
dc.description.abstractDrought has negative impacts on water resources, food security, soil degradation, desertification and agricultural productivity. The meteorological and hydrological droughts prediction using standardized precipitation/runoff indices (SPI/SRI) is crucial for effective water resource management. In this study, we suggest ANFISWCA, an adaptive neuro-fuzzy inference system (ANFIS) optimized by the water cycle algorithm (WCA), for hydrological drought forecasting in semi-arid regions of Algeria. The new model was used to predict SRI at 3-, 6-, 9-, and 12-month accumulation periods in the Wadi Mina basin, Algeria. The results of the model were assessed using four criteria; determination coefficient, mean absolute error, variance accounted for, and root mean square error, and compared with those of the standalone ANFIS model. The findings suggested that throughout the testing phase at all the sub-basins, the proposed hybrid model outperformed the conventional model for estimating drought. This study indicated that the WCA algorithm enhanced the ANFIS model's drought forecasting accuracy. The proposed model could be employed for forecasting drought at multi-timescales, deciding on remedial strategies for dealing with drought at study stations, and aiding in sustainable water resources management.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHydrological droughten_US
dc.subjectHidrolojik kuraklıktr_TR
dc.subjectHybrid modelen_US
dc.subjectHibrit modeltr_TR
dc.subjectANFISen_US
dc.subjectWater cycle algorithm: semi-arid regionsen_US
dc.subjectSu döngüsü algoritması: yarı kurak bölgelertr_TR
dc.titleAn improved adaptive neuro-fuzzy inference system for hydrological drought prediction in algeriaen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:001052900300001
dc.identifier.scopus2-s2.0-85166481383
dc.identifier.volume131
dc.contributor.orcid0000-0003-2769-106X [Danandeh Mehr, Ali]
dc.contributor.abuauthorDanandeh Mehr, Ali
dc.contributor.yokid275430 [Danandeh Mehr, Ali]
dc.relation.journalPhysics and Chemistry of the Earthen_US
dc.contributor.ScopusAuthorID55899085700 [Danandeh Mehr, Ali]
dc.identifier.doi10.1016/j.pce.2023.103451


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record