Basit öğe kaydını göster

dc.contributor.authorReihanifar, Masoud
dc.contributor.authorDanandeh Mehr, Ali
dc.contributor.authorTur, Rifat
dc.contributor.authorAhmed, Abdelkader T.
dc.contributor.authorAbualigah, Laith
dc.contributor.authorDąbrowska, Dominika
dc.date.accessioned2023-11-16T06:57:35Z
dc.date.available2023-11-16T06:57:35Z
dc.date.issued2023
dc.identifier.citationReihanifar, M., Danandeh Mehr, A., Tur, R., Ahmed, A. T., Abualigah, L. & Dąbrowska, D. (2023). A new multi-objective genetic programming model for meteorological drought forecasting. Water, 15(20), 1-13.en_US
dc.identifier.issn2073-4441
dc.identifier.urihttp://hdl.handle.net/20.500.12566/1819
dc.description.abstractDrought forecasting is a vital task for sustainable development and water resource management. Emerging machine learning techniques could be used to develop precise drought forecasting models. However, they need to be explicit and simple enough to secure their implementation in practice. This article introduces a novel explicit model, called multi-objective multi-gene genetic programming (MOMGGP), for meteorological drought forecasting that addresses both the accuracy and simplicity of the model applied. The proposed model considers two objective functions: (i) root mean square error and (ii) expressional complexity during its evolution. While the former is used to increase the model accuracy at the training phase, the latter is assigned to decrease the model complexity and achieve parsimony conditions. The model evolution and verification procedure were demonstrated using the standardized precipitation index obtained for Burdur City, Turkey. The comparison with benchmark genetic programming (GP) and multi-gene genetic programming (MGGP) models showed that MOMGGP provides the same forecasting accuracy with more parsimony conditions. Thus, it is suggested to utilize the model for practical meteorological drought forecasting.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDroughten_US
dc.subjectKuraklıktr_TR
dc.subjectSPIen_US
dc.subjectMulti-objective optimizationen_US
dc.subjectÇok amaçlı optimizasyontr_TR
dc.subjectEvolutionary modellingen_US
dc.subjectEvrimsel modellemetr_TR
dc.subjectBurduren_US
dc.subjectBurdurtr_TR
dc.titleA new multi-objective genetic programming model for meteorological drought forecastingen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:001093691600001
dc.identifier.scopus2-s2.0-85175043003
dc.identifier.volume15
dc.identifier.issue20
dc.identifier.startpage1
dc.identifier.endpage13
dc.contributor.orcid0000-0003-2769-106X [Danandeh Mehr, Ali]
dc.contributor.abuauthorDanandeh Mehr, Ali
dc.contributor.yokid275430 [Danandeh Mehr, Ali]
dc.relation.journalWateren_US
dc.contributor.ScopusAuthorID55899085700 [Danandeh Mehr, Ali]
dc.identifier.doi10.3390/w15203602


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster