dc.contributor.author | Iqbal, Sadiq | |
dc.contributor.author | Khalib, Shaheer | |
dc.contributor.author | Hamamreh, Jehad M. | |
dc.date.accessioned | 2023-07-03T12:49:16Z | |
dc.date.available | 2023-07-03T12:49:16Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Iqbal, S., Khalib, S. & Hamamreh, J. M. (2022). Improving the performance of cell-edge users in 6G and beyond networks by utilizing a novel precoding-based hybrid CoMP transmission design. RS Open Journal on Innovative Communication Technologies, 3(7). | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.12566/1623 | |
dc.description.abstract | The rapid growth of mobile traffic is driving the development of cellular communication technologies to massively improve the high-end communication experiences such as high throughput, high reliability, and universal access. To accomplish these demands in a cellular environment is a huge challenge and it is more critical at the cell edges infected with interference. Moreover, if the users have poor channel conditions, they experience even more severe degradation due to inter-cell interference that creates a bottleneck in wireless systems. Besides, neither time/frequency division multiplexing nor power control has achieved the full promise of spectral efficiency. Due to differences in transmission power and channel gains in heterogeneous networks, interference cancellation-based transmission techniques have great opportunities to increase throughput. Therefore, to meet the quality of service (QoS) requirements, user equipment devices (UEs) must be assigned a significant amount of power. To address these requirements and challenges, we propose a novel hybrid coordinated multi-point (H-CoMP) design for cell-edge users to combat inter-cell interference (ICI), inter-user interference (IUI), and improve spectral efficiency. Specifically, channel-based precoders are designed to deal with ICI, remove channel effects and provide reliable communication to cell-edge users. Mathematical models and simulations highlight the inventiveness and efficiency of the proposed H-CoMP paradigm. The acquired results show the performance of the proposed solution and the ability to reduce system complexity leading to enhanced overall system performance. | en_US |
dc.description.sponsorship | No sponsor | en_US |
dc.language.iso | eng | en_US |
dc.publisher | RS Open Journal on Innovative Communication Technologies | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Coordination multi-point (CoMP) | en_US |
dc.subject | Koordinasyon çok noktalı (CoMP) | tr_TR |
dc.subject | Cell edge | en_US |
dc.subject | Hücre kenarı | tr_TR |
dc.subject | Multi-user | en_US |
dc.subject | Çok kullanıcılı | tr_TR |
dc.subject | Reliability | en_US |
dc.subject | Güvenilirlik | tr_TR |
dc.subject | Spectral efficiency | en_US |
dc.subject | Spektral verimlilik | tr_TR |
dc.subject | Precoding | en_US |
dc.subject | Ön kodlama | tr_TR |
dc.subject | Wireless communication | en_US |
dc.subject | Kablosuz iletişim | tr_TR |
dc.subject | Physical layer security | en_US |
dc.subject | Fiziksel katman güvenliği | tr_TR |
dc.subject | 6G and beyond networks | en_US |
dc.subject | 6G ve ötesi ağlar | tr_TR |
dc.title | Improving the performance of cell-edge users in 6G and beyond networks by utilizing a novel precoding-based hybrid CoMP transmission design | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.publicationcategory | International publication | en_US |
dc.contributor.orcid | 0000-0003-4435-5500 [Hamamreh, Jehad M.] | |
dc.contributor.abuauthor | Hamamreh, Jehad M. | |
dc.contributor.yokid | 291980 [Hamamreh, Jehad M.] | |
dc.identifier.doi | 10.46470/03d8ffbd.c796f15c | |