Basit öğe kaydını göster

dc.contributor.authorDalaman, Uğur
dc.contributor.authorŞengül Ayan, Sevgi
dc.contributor.authorYaraş, Nazmi
dc.date.accessioned2023-03-02T08:03:17Z
dc.date.available2023-03-02T08:03:17Z
dc.date.issued2022
dc.identifier.citationDalaman, U., Şengül Ayan, S. & Yaraş, N. (2022). Classification of diabetic cardiomyopathy-related cells using machine learning. Moscow University Physics Bulletin, 77(6), 846–857. https://doi.org/10.3103/S0027134922060042en_US
dc.identifier.issn0027-1349
dc.identifier.urihttp://hdl.handle.net/20.500.12566/1377
dc.description.abstractThe patch-clamp technique is a significant tool in current electrophysiology research, especially in cardiovascular diseases, because it can capture electrical activity of the heart from cardiomyocytes. It is challenging to classify action potential waveforms in cardiological data from these recordings because it relies largely on professional assistance. We discovered that supervised classification may be used to predict the impact of electrophysiological perturbations on cardiomyopathic action potential groups in rat ventricular cells. At the cellular level, action potential classifications are utilized to discern between pathological and control waveforms in recorded cardiac action potentials. The four groups are as follows: (1) control, (2) diabetes, (3) diabetes with angiotensin, and (4) angiotensin. The signal’s biologically relevant features for the treatment of cardiomyopathy have been discovered. After they have been trained with different sets of features, the results of the seven machine learning models are compared. The knearest neighbor approach, along with the decision tree and random forest algorithms, is the best classifier for diagnosing aberrant action potential waveforms, with an accuracy of above 99% when compared to other models. The high classification accuracy demonstrates that the gathered individual cardiac AP features provide useful information regarding the pathological status of cardiomyocytes.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherMoscow University Physics Bulletinen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectYapay zekatr_TR
dc.subjectNumerical modelingen_US
dc.subjectSayısal modellemetr_TR
dc.subjectSupervised classificationen_US
dc.subjectDenetimli sınıflandırmatr_TR
dc.subjectCardiomyoctesen_US
dc.subjectKardiyomiyositlertr_TR
dc.subjectAngiotensin 1-7en_US
dc.subjectAnjiyotensin 1-7tr_TR
dc.subjectDiabetic cardiomyopathyen_US
dc.subjectDiyabetik kardiyomiyopatitr_TR
dc.subjectSystems biologyen_US
dc.subjectSistem biyolojisitr_TR
dc.titleClassification of diabetic cardiomyopathy-related cells using machine learningen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.scopus2-s2.0-85148454756
dc.identifier.volume77
dc.identifier.issue6
dc.identifier.startpage846
dc.identifier.endpage857
dc.contributor.orcid0000-0003-0083-4446 [Şengül Ayan, Sevgi]
dc.contributor.abuauthorŞengül Ayan, Sevgi
dc.contributor.yokid236492 [Şengül Ayan, Sevgi]
dc.contributor.ScopusAuthorID57216946397 [Şengül Ayan, Sevgi]
dc.identifier.doi10.3103/S0027134922060042


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster