Basit öğe kaydını göster

dc.contributor.authorŞengül Ayan, Sevgi
dc.contributor.authorSüleymanoğlu, Selim
dc.contributor.authorÖzdoğan, Hasan
dc.date.available2023-03-01T10:04:35Z
dc.date.available2023-03-01T10:04:35Z
dc.date.issued2022
dc.identifier.citationŞengül Ayan, S., Süleymanoğlu, S. & Özdoğan, H. (2022). A pilot study of ion current estimation by ANN from action potential waveforms. Journal of Biological Physics, 48(4), 461-475. https://doi.org/10.1007/s10867-022-09619-7en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12566/1376
dc.description.abstractExperiments using conventional experimental approaches to capture the dynamics of ion channels are not always feasible, and even when possible and feasible, some can be timeconsuming. In this work, the ionic current–time dynamics during cardiac action potentials (APs) are predicted from a single AP waveform by means of artificial neural networks (ANNs). The data collection is accomplished by the use of a single-cell model to run electrophysiological simulations in order to identify ionic currents based on fluctuations in ion channel conductance. The relevant ionic currents, as well as the corresponding cardiac AP, are then calculated and fed into the ANN algorithm, which predicts the desired currents solely based on the AP curve. The validity of the proposed methodology for the Bayesian approach is demonstrated by the R (validation) scores obtained from training data, test data, and the entire data set. The Bayesian regularization’s (BR) strength and dependability are further supported by error values and the regression presentations, all of which are positive indicators. As a result of the high convergence between the simulated currents and the currents generated by including the efficacy of a developed Bayesian solver, it is possible to generate behavior of ionic currents during time for the desired AP waveform for any electrical excitable cell.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherJournal of Biological Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCardiac action potentialen_US
dc.subjectKardiyak aksiyon potansiyelitr_TR
dc.subjectArtificial neural networksen_US
dc.subjectYapay sinir ağlarıtr_TR
dc.subjectBayesian regularizationen_US
dc.subjectBayes düzenlemesitr_TR
dc.subjectNumerical modelingen_US
dc.subjectSayısal modellemetr_TR
dc.subjectCurrent–time dynamicsen_US
dc.subjectŞimdiki zaman dinamikleritr_TR
dc.titleA pilot study of ion current estimation by ANN from action potential waveformsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:000882774300001
dc.identifier.scopus2-s2.0-85141827041
dc.identifier.volume48
dc.identifier.issue4
dc.identifier.startpage461
dc.identifier.endpage475
dc.contributor.orcid0000-0003-0083-4446 [Şengül Ayan, Sevgi]
dc.contributor.orcid0000-0001-6127-9680 [Özdoğan, Hasan]
dc.contributor.abuauthorŞengül Ayan, Sevgi
dc.contributor.abuauthorÖzdoğan, Hasan
dc.contributor.yokid236492 [Şengül Ayan, Sevgi]
dc.contributor.yokid116763 [Özdoğan, Hasan]
dc.contributor.ScopusAuthorID57216946397 [Şengül Ayan, Sevgi]
dc.contributor.ScopusAuthorID55123312600 [Özdoğan, Hasan]
dc.identifier.PubMedID36372807
dc.identifier.doi10.1007/s10867-022-09619-7


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster