dc.contributor.author | Omanović, Amra | |
dc.contributor.author | Kazan, Hilal | |
dc.contributor.author | Oblak, Polona | |
dc.contributor.author | Curk, Tomaž | |
dc.date.accessioned | 2022-04-26T06:38:15Z | |
dc.date.available | 2022-04-26T06:38:15Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Omanović, A., Kazan, H., Oblak, P. & Curk, T. (2021). Sparse data embedding and prediction by tropical matrix factorization. BMC Bioinformatics, 22(89), 1-18. | en_US |
dc.identifier.issn | 1471-2105 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12566/1178 | |
dc.description.abstract | Background Matrix factorization methods are linear models, with limited capability to model complex relations. In our work, we use tropical semiring to introduce non-linearity into matrix factorization models. We propose a method called Sparse Tropical Matrix Factorization (STMF) for the estimation of missing (unknown) values in sparse data. Results We evaluate the efficiency of the STMF method on both synthetic data and biological data in the form of gene expression measurements downloaded from The Cancer Genome Atlas (TCGA) database. Tests on unique synthetic data showed that STMF approximation achieves a higher correlation than non-negative matrix factorization (NMF), which is unable to recover patterns effectively. On real data, STMF outperforms NMF on six out of nine gene expression datasets. While NMF assumes normal distribution and tends toward the mean value, STMF can better fit to extreme values and distributions. Conclusion STMF is the first work that uses tropical semiring on sparse data. We show that in certain cases semirings are useful because they consider the structure, which is different and simpler to understand than it is with standard linear algebra. | en_US |
dc.description.sponsorship | This work is supported by the Slovene Research Agency, Young Researcher Grant (52096) awarded to AO, and research core funding (P1-0222 to PO and P2-0209 to TC). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | BMC Bioinformatics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Data embedding | en_US |
dc.subject | Veri gömme | tr_TR |
dc.subject | Matrix factorization | en_US |
dc.subject | Matris çarpanlarına ayırma | tr_TR |
dc.subject | Tropical factorization | en_US |
dc.subject | Tropical semiring | en_US |
dc.subject | Sparse data | en_US |
dc.subject | Seyrek veri | tr_TR |
dc.subject | Matrix completion | en_US |
dc.subject | Matris tamamlama | tr_TR |
dc.title | Sparse data embedding and prediction by tropical matrix factorization | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.publicationcategory | International publication | en_US |
dc.identifier.wos | WOS:000624528900003 | |
dc.identifier.scopus | 2-s2.0-85101785747 | |
dc.identifier.volume | 22 | |
dc.identifier.issue | 89 | |
dc.identifier.startpage | 1 | |
dc.identifier.endpage | 18 | |
dc.contributor.orcid | 0000-0003-2461-4579 [Kazan, Hilal] | |
dc.contributor.abuauthor | Kazan, Hilal | |
dc.contributor.yokid | 107780 [Kazan, Hilal] | |
dc.contributor.ScopusAuthorID | 35094213400 [Kazan, Hilal] | |
dc.identifier.PubMedID | 33632116 | |
dc.identifier.doi | 10.1186/s12859-021-04023-9 | |