• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

SCITUNA: a network alignment approach for integrating multiple single-cell RNA-Seq datasets

Thumbnail
Göster/Aç
SCITUNA: a network alignment approach for integrating multiple single-cell RNA-Seq datasets (396.5Kb)
Tarih
2022
Yazar
Doğan, Onur
Erten, Burak Onur
Erten, Cesim
Houdjedj, Aissa
Kazan, Hilal
Krichen, Mohamed
Marouf, Yacine
Üst veri
Tüm öğe kaydını göster
Özet
The throughput and cost of single-cell RNA sequencing (scRNA-seq) are in continuous improvement, and so is the demand for larger-scale scRNA-seq data, which could require integrating multiple datasets from different sequencing experiments. The integration of different scRNA-seq datasets could be challenging due to batch effect, a phenomenon that could occur when the experiments are run in different laboratories, at different time periods, or when using different instruments and technologies. Batch effect correction is a necessary process to prevent misleading results in downstream analysis on the integrated data. The challenge in scRNA-seq integration is mainly to merge the datasets while keeping the cell populations separate and maintaining the local structure of the datasets. We introduce SciTuna, a Single-Cell RNA-seq datasets Integration Tool Using Network Alignment with batch effect correction. Our method finds matching cells between the batches and uses an iterative approach to refine the integration of each cell based on the nearest neighboring cells. We show that our method outperforms other integration methods such as Seurat, Batman, and scAlign using simulated, semi-real, and real data based on different metrics. SciTuna also shows a reliable performance integrating datasets with semioverlapping population compositions. Lastly, comparative differential expression analysis was carried out on the integrated datasets to demonstrate the batch effect correction and the robustness of the integration method.
Bağlantı
http://hdl.handle.net/20.500.12566/1681
Koleksiyonlar
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.