• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparing nonlinear optimization techniques to predict dynamic parameters of biological processes in nonlinear differential equation models

Thumbnail
Göster/Aç
Comparing nonlinear optimization techniques to predict dynamic parameters of biological processes in nonlinear differential equation models (1.191Mb)
Tarih
2022
Yazar
Şengül Ayan, Sevgi
Üst veri
Tüm öğe kaydını göster
Özet
The modeling of nonlinear dynamics, which has been a significant research topic for half a decade. During the development process, the modeler creates a model that is as close to the underlying real dynamics as possible. It is extremely difficult to evaluate the numerous parameters that appear in the nonlinear equations in a way that does not cause the parameter estimates of the dynamic constants to stray into regions of parameter space that produce nonphysical predictions. The use of parameter estimation and nonlinear fitting techniques in conjunction with numerical models allows for greater flexibility by allowing for a variety of experimental boundary and starting conditions. The majority of the defined methods are iterative in nature, necessitating the use of an initial estimate of the unknown parameters to be optimized before proceeding. Multi-objective optimization methods are also used to capture both the underlying dynamics and the main response. Although it is possible to estimate unknown parameters in complex nonlinear differential equation models using experimental or clinical data, doing so is extremely difficult. Consequently, we usually fix some parameter values, either based on literature or personal experience, in order to obtain only parameter estimates that are relevant from clinical or experimental data. When such prior information is not available, it is preferable to derive all of the parameter estimates from data rather than from prior information. In this study, different nonlinear optimization approaches will be compared in order to estimate different biological dynamic parameters in a nonlinear differential equation model.
Bağlantı
http://hdl.handle.net/20.500.12566/1597
Koleksiyonlar
  • Endüstri Mühendisliği Bölümü / Department of Industrial Engineering

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.