• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Diş Hekimliği Fakültesi / Faculty of Dentistry
  • Temel Tıp Bilimleri Anatomi Anabilim Dalı / Basic Medical Sciences Department of Anatomy
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Diş Hekimliği Fakültesi / Faculty of Dentistry
  • Temel Tıp Bilimleri Anatomi Anabilim Dalı / Basic Medical Sciences Department of Anatomy
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reliability and agreement of Azure Kinect and Kinect v2 depth sensors in the shoulder joint range of motion estimation

Thumbnail
Göster/Aç
Reliability and agreement of Azure Kinect and Kinect v2 depth sensors in the shoulder joint range of motion estimation (1.083Mb)
Tarih
2022
Yazar
Özsoy, Ümit
Yıldırım, Yılmaz
Karaşin, Sezen
Şekerci, Rahime
Süzen, Lütfiye Bikem
Üst veri
Tüm öğe kaydını göster
Özet
Background: Depth sensor–based motion analysis systems are of interest to researchers with low cost, fast analysis capabilities, and portability; thus, their reliability is a matter of interest. Our study examined the agreement and reliability in estimating the basic shoulder movements of Azure Kinect, Microsoft’s state-of-the-art depth sensor, and its predecessor, Kinect v2, by comparing them with the gold standard marker-based motion analysis system. Methods: In our study, the shoulder joint ranges of motion of 20 healthy individuals were analyzed during dominant-side flexion, abduction, and rotation movements. The reliability and agreement between methods were evaluated using the intraclass correlation co- efficient (ICC) and the Bland-Altman method. Results: Compared to the gold standard method, the old- and new-generation Kinect showed similar performance in terms of reliability in the estimation of flexion (ICC ¼ 0.86 vs. 0.82) and abduction (ICC ¼ 0.78 vs. 0.79) movements, respectively. In contrast, the new- generation sensor showed higher reliability than its predecessor in internal (ICC ¼ 0.49 vs. 0.75) and external rotation (ICC ¼ 0.38 vs. 0.67) movement. Conclusion: Compared to its predecessor, Kinect Azure has higher reliability in analyzing movements in a lower range and variability, thanks to its state-of-the-art hardware. However, the sensor should also be tested on multiaxial movements, such as combing hair, drink- ing water, and reaching back, which are the tasks that simulate extremity movements in daily life.
Bağlantı
http://hdl.handle.net/20.500.12566/1565
Koleksiyonlar
  • Temel Tıp Bilimleri Anatomi Anabilim Dalı / Basic Medical Sciences Department of Anatomy

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.