• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

PersonaDrive: a method for the identification and prioritization of personalized cancer drivers

Thumbnail
Göster/Aç
PersonaDrive: a method for the identification and prioritization of personalized cancer drivers (564.7Kb)
Tarih
2022
Yazar
Erten, Cesim
Houdjedj, Aissa
Kazan, Hilal
Taleb Bahmed, Ahmed Amine
Üst veri
Tüm öğe kaydını göster
Özet
Motivation: A major challenge in cancer genomics is to distinguish the driver mutations that are causally linked to cancer from passenger mutations that do not contribute to cancer development. The majority of existing methods provide a single driver gene list for the entire cohort of patients. However, since mutation profiles of patients from the same cancer type show a high degree of heterogeneity, a more ideal approach is to identify patient-specific drivers. Results: We propose a novel method that integrates genomic data, biological pathways and protein connectivity information for personalized identification of driver genes. The method is formulated on a personalized bipartite graph for each patient. Our approach provides a personalized ranking of the mutated genes of a patient based on the sum of weighted ‘pairwise pathway coverage’ scores across all the samples, where appropriate pairwise patient similarity scores are used as weights to normalize these coverage scores. We compare our method against five state-of-the-art patient-specific cancer gene prioritization methods. The comparisons are with respect to a novel evaluation method that takes into account the personalized nature of the problem. We show that our approach outperforms the existing alternatives for both the TCGA and the cell line data. In addition, we show that the KEGG/Reactome pathways enriched in our ranked genes and those that are enriched in cell lines’ reference sets overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods. Our findings can provide valuable information toward the development of personalized treatments and therapies. Availability and implementation: All the codes and data are available at https://github.com/abu-compbio/PersonaDrive, and the data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.6520187.
Bağlantı
http://hdl.handle.net/20.500.12566/1441
Koleksiyonlar
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.