• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Lisansüstü Eğitim Enstitüsü / Graduate Education Institute
  • Elektrik ve Bilgisayar Mühendisliği (Tezli - İngilizce) / Electrical and Computer Engineering (Thesis - English
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Lisansüstü Eğitim Enstitüsü / Graduate Education Institute
  • Elektrik ve Bilgisayar Mühendisliği (Tezli - İngilizce) / Electrical and Computer Engineering (Thesis - English
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi class breast cancer classification from multi magnification scales using histopathical images

Thumbnail
Tarih
2021
Yazar
Zulfiqar, Muhammad Zunair
Üst veri
Tüm öğe kaydını göster
Özet
Over the last few decades, cases of breast cancer have increased enormously. Early detection of cancer is one of the main approaches to prevent death. The only way to cure this disease is to detect breast cancer at early stages. Delay in identifying breast cancer leads to an increase in the death rate. The advent of technology has made it easier for humansto automate patient prognosis and deduction of disease from symptoms and report analysis. Although modern era technology makes it easy to detect cancers early. A machine learning algorithm is applied to diagnose breast cancer early in this research. This research proposed a decision level fusion based on convolutional neural network (CNN) and deep extreme learning machine (DELM) algorithms for multi-class breast cancer classification. CNN is a sort of deep learning that is unique. This study used a CNN to categorize and distinguish breast cancer images from the BreakHis dataset, divided into four benign and four malignant subtypes. Deep extreme machine learning generally uses sequences of several layers to accomplish the feature extraction and classification tasks. It mplemented and succeeded in breast cancer disease classification in early stages by achieving better accuracy.
 
Son birkaç on yılda, meme kanseri vakaları büyük ölçüde artmıştır. Kanserin erken teşhisi, ölümü önlemek için ana yaklaşımlardan biridir. Bu hastalığı tedavi etmenin tek yolu meme kanserini erken evrelerde tespit etmektir. Meme kanseri teşhisinde gecikme ölüm oranında artışa neden olur. Teknolojinin ortaya çıkışı, insanların hasta prognozunu otomatikleştirmesini ve semptomlardan hastalık çıkarımını ve rapor analizini kolaylaştırdı. Her ne kadar modern çağ teknolojisi kanserleri erken teşhis etmeyi kolaylaştırıyor. Bu araştırmada meme kanserini erken teşhis etmek için bir makine öğrenme algoritması uygulanmaktadır. Bu araştırma, çok sınıflı meme kanseri sınıflandırması için evrişimli sinir ağı (CNN) ve derin aşırı öğrenme makinesi (DELM) algoritmalarına dayalı bir karar düzeyi füzyonu önerdi. CNN, benzersiz bir tür derin öğrenmedir. Bu çalışma, meme kanseri görüntülerini BreakHis veri setinden dört iyi huylu ve dört kötü huylu alt tipe bölünmüş olarak kategorize etmek ve ayırt etmek için bir CNN kullandı. Derin aşırı makine öğrenimi, özellik çıkarma ve sınıflandırma görevlerini gerçekleştirmek için genellikle birkaç katman dizisini kullanır. Daha iyi doğruluk elde ederek erken evrelerde meme kanseri hastalık sınıflandırmasını uyguladı ve başardı.
 
Bağlantı
http://hdl.handle.net/20.500.12566/1249
Koleksiyonlar
  • Elektrik ve Bilgisayar Mühendisliği (Tezli - İngilizce) / Electrical and Computer Engineering (Thesis - English

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at

Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.