• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
  •   E-arşiv Ana Sayfası
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid movie recommender system and rating prediction model

Thumbnail
Göster/Aç
A hybrid movie recommender system and rating prediction model (470.6Kb)
Tarih
2021-07-01
Yazar
Çalışkan, Cafer
Sanwal, Muhammad
Üst veri
Tüm öğe kaydını göster
Özet
In the current era, a rapid increase in data volume produces redundant information on the internet. This predicts the appropriate items for users a great challenge in information systems. As a result, recommender systems have emerged in this decade to resolve such problems. Various e-commerce platforms such as Amazon and Netflix prefer using some decent systems to recommend their items to users. In literature, multiple methods such as matrix factorization and collaborative filtering exist and have been implemented for a long time, however recent studies show that some other approaches, especially using artificial neural networks, have promising improvements in this area of research. In this research, we propose a new hybrid recommender system that results in better performance. In the proposed system, the users are divided into two main categories, namely average users, and non-average users. Then, various machine learning and deep learning methods are applied within these categories to achieve better results. Some methods such as decision trees, support vector regression, and random forest are applied to the average users. On the other side, matrix factorization, collaborative filtering, and some deep learning methods are implemented for non-average users. This approach achieves better compared to the traditional methods.
Bağlantı
http://hdl.handle.net/20.500.12566/1118
Koleksiyonlar
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




sherpa/romeo


Göz at
Tüm E-arşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişimBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreABU Yazarına GöreWOSScopusPubMedTRDizinErişim

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


|| Kütüphane || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

E-arşiv@AntalyaBilim:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.