• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Target-independent prediction of drug synergies using only drug lipophilicity

Thumbnail
View/Open
Target-independent prediction of drug synergies using only drug lipophilicity (2.567Mb)
Date
2014
Author
Kazan, Hilal
Yılancıoğlu, Kaan
Weinstein, Zohar B.
Meydan, Cem
Akhmetov, Azat
Toprak, Işıl
Durmaz, Arda
Iossifov, Ivan
Roth, Frederick P.
Çokol, Murat
Metadata
Show full item record
Abstract
Physicochemical properties of compounds have been instrumental in selecting lead compounds with increased drug-likeness. However, the relationship between physicochemical properties of constituent drugs and the tendency to exhibit drug interaction has not been systematically studied. We assembled physicochemical descriptors for a set of antifungal compounds (“drugs”) previously examined for interaction. Analyzing the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we found that combinations of two lipophilic drugs had a greater tendency to show drug synergy. We developed a more refined decision tree model that successfully predicted drug synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our predictions achieved a precision of 63% and allowed successful prediction for 58% of synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a substantial fraction of synergistic drug interactions. We also generated and analyzed a large-scale synergistic human toxicity network, in which we observed that combinations of lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms.
URI
http://hdl.handle.net/20.500.12566/178
Collections
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • PubMed İndeksli Yayınlar Koleksiyonu
  • Scopus İndeksli Yayınlar Koleksiyonu
  • WOS İndeksli Yayınlar Koleksiyonu

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.