On a class of Ricci quadratic Finsler metrics
Abstract
In this paper, we study a class of Finsler warped product metrics with quadratic Ricci curvature. This class is characterized by a partial differential equation. In particular, we obtain a special class of Finsler warped product metrics with quadratic Ricci curvature, indeed, the metrics in this class are Einstein but not Ricci flat. We find an equation that characterizes Finsler warped product metrics as a strongly Ricci-quadratic.
Bu çalışmada, kuadratik Ricci eğriliği olan bükülmüş çarpımlı Finsler metriklerinin bir sınıfı incelenmiştir. Bu sınıf, kısmi bir diferansiyel denklem ile karakterize edilmiş olup, kuadratik Ricci eğriliği olan bükülmüş çarpımlı Finsler metriklerinin bir özel sınıfı olan bu metrikler Einstein'dır, ama Ricci düz değiller. Ayrıca kuadratik kuvvetli Ricci eğriliği olan bükülmüş çarpımlı Finsler metriklerini bir sınıfı Finsler'in çarpık ürün metriklerini güçlü bir Ricci-kuadratik olarak nitelendiren bir denklem bulunmuştur.
Related items
Showing items related by title, author, creator and subject.
-
On a class of Ricci quadratic Finsler metrics
Gabrani, Mehran; Sengelen Sevim, Esra; Ülgen, Semail (4th International Conference on Applied Engineering and Natural Sciences, 2022)In this paper, we study a class of Finsler warped product metrics with quadratic Ricci curvature. This class is characterized by a partial differential equation. In particular, we obtain a special class of Finsler warped ... -
On some Ricci curvature tensors in Finsler geometry
Sengelen Sevim, Esra; Shen, Zhongmin; Ülgen, Semail (4th International Conference on Applied Engineering and Natural Sciences, 2022)In this paper we discuss several Ricci curvature tensors and their relationship with the Ricci curvature and some non-Riemannian quantities. By these Ricci curvature tensors, we shall have a better understanding on the ... -
On strongly Ricci-quadratic finsler metrics
Şengelen Sevim, Esra; Shen, Zhongmin; Ülgen, Semail (Springer, 2023)Finsler metrics being Ricci-quadratic is a non-Riemannian condition since the Ricci curvature (tensor) is always Ricci-quadratic for Riemannian metrics. In this paper, we introduce the notion of strongly Ricci-quadratic ...