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Abstract. The corticotroph model is a 7th order nonlinear differential equation 

system derived for representing the action potential dynamics of corticotrophs; one 

of the endocrine cells that is responsible for stress regulation. Here we use 

numerical continuation methods to perform bifurcation analysis since controlling 

bifurcations in the hormonal dynamics may bring some new insights in the 

treatment of stress related disorders. We study the bifurcation structure of the 

system as a function of the BK-channel dynamic parameters and the all maximal 

conductances. We identify the regions of bistability and bifurcations that shape the 

transitions between resting, bursting and spiking behaviors, and which lead to the 

appearance of bursting which is directly connected to stress regulation. 

Furthermore, we find that there are two routes to bursting, one is the experimentally 

observed BK-channel dynamics and the other is Ca2+ channel conductance only. 

Finally, we discuss how some of the described bifurcations affect dynamic behavior 

and can be tested experimentally. 
 

1. Introduction 
 

Systems of ordinary differential equations (ODEs) have a great impact on 

understanding the many biological systems, like electrically excitable cells ([1], [2]), 

growth dynamics [3] or chemical reaction networks [4]. Another approach for such 

systems is stochastic approach [5] but when it comes to numerical simulations of 

large nonlinear models and parameter estimation, ODE-based models offer a variety 

of analysis methods [6]. Another important property of ODE models for biological 

models are, we can observe very different dynamics for different sets of parameters 

such as stable/unstable equilibriums, limit cycles, periodic or chaotic orbits. A 

challenging part in developing and analyzing such models is to understand how 

parameters of the model affect features of its such dynamics. Numerical solution of 
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these models with hand tuning of parameters is a first approach to predict the 

system’s behavior and effects on solutions [7]. But trusting the modeler’s intuition 

by manual inspection of the equations is not a suitable approach for non–trivial 

systems. At this point we need a more powerful approach to see the specific behavior, 

and how this depends on parameter values. 

 

Excitable electric activity is observed to many biological systems; such as some 

isolated or coupled neurons, hormone secretion, muscle contraction or heart cells. 

This activity plays an essential role for the function of the cell as well as for its 

communication with neighboring cells. From a dynamical system point of view, a 

slight perturbation of the single stable stationary state by changing related parameter 

would lead to a large and long-lasting shift away from stationary point before the 

system asymptotically returning to equilibrium. Performing numerical continuation 

methods to perform bifurcation analysis is often a powerful way to analyses the 

properties of such systems, since it predicts what kind of behavior occurs where in 

parameter space ([7], [8]). Bifurcation analysis start with computing all equilibrium 

and periodic solutions of the system along with information about the stability of 

these solutions. Bifurcation diagrams are created later from the curves of equilibrium 

solutions as one of the parameters is varied while all other parameters are held fixed. 

To generate an entire family of bifurcation diagrams, this procedure can be repeated 

for all important parameters as a variable. 

 

In this paper we focus on the analysis of CRH/AVP bursting in corticotroph cells of 

the pituitary using the mathematical model that author defined in the previous work 

[2]. These cells are responsible for the neuroendocrine response to stress as an 

integral component of the hypothalamic–pituitary–adrenal (HPA) axis. 

Corticotrophs display mostly single spike activity under basal conditions that 

transition to complex bursting behaviors upon stimulation by the CRH and AVP, 

however the underlying mechanisms controlling bursting in terms of dynamical 

system viewpoint are unknown. Similar bursting behavior that we describe for 

corticotrophs is known to occur in a variety of other cell types as well. For instance, 

Morris and Lecar [9] modeled the complex firing patterns in barnacle giant muscle 

fibers, for pacemaker neurons burst patterns are shown by Pant and Kim [10], 

bursting patterns in discharging cold fibers of the cat are investigated by Braun et al. 
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[11]. But biophysical mechanism underlying the bursting behavior vary significantly 

from cell type to cell type. 

 

To this aim, we use mathematical modeling, numerical simulations and dynamical 

systems theory approaches to investigate the dynamic behavior of the corticotroph 

system. Parameter regimes for spiking and bursting activity are not investigated 

before, a detailed mathematical analysis of the dynamical regimes of the model has 

not performed yet. We study the bifurcation structure of the system as a function of 

conductances and parameters responsible for bursting. We identify the bifurcations 

that shape the transitions between resting, bursting and spiking behaviors which lead 

to the appearance of bursting after the stimulation with CRH. Insights gained from 

these analyses helped us to understand how the activity changes arise and whether 

there is other parameter set that can cause bursting for corticotrophs. These insights 

will provide us measurable results with experiments. Due to the complexity of the 

model, a great deal of extra insight can be gained by analyzing how some of the 

many other parameters shape the dynamical landscape of the model. Traditionally 

this has been used to isolate computationally important variables, responsible for 

bursting, given the difficulty of teasing apart the system experimentally. 

 

 
2. The Corticotroph Model 

 
 As the basis for our bifurcation analysis, we will use the following model 

suggested by the author without the noise term [2]; 

 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −(𝐼𝐶𝑎 + 𝐼𝐾−𝑑𝑟 + 𝐼𝐵𝐾−𝑛𝑒𝑎𝑟 + 𝐼𝐵𝐾−𝑓𝑎𝑟 + 𝐼𝐾−𝑖𝑟 + 𝐼𝑁𝑆)              (2.1) 

𝐼𝐶𝑎(𝑉) = 𝑔𝐶𝑎𝑚∞(𝑉)(𝑉 − 𝑉𝐶𝑎)                                                    (2.2) 

𝐼𝐾−𝑑𝑟(𝑉) = 𝑔𝐾𝑛(𝑉 − 𝑉𝐾)                                                         (2.3) 

𝐼𝐾−𝑖𝑟 (𝑉) =  𝑔𝐾−𝑖𝑟𝑟∞(𝑉)(𝑉 − 𝑉𝐾)                                                  (2.4) 

𝐼𝐵𝐾−𝑓𝑎𝑟(𝑉, 𝑐)  =  𝑔𝐵𝐾−𝑓𝑎𝑟𝑏𝑘𝑓(𝑉 − 𝑉𝐾)                                             (2.5) 
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𝐼𝐵𝐾−𝑛𝑒𝑎𝑟(𝑉, 𝑐𝑑𝑜𝑚)  =  𝑔𝐵𝐾−𝑛𝑒𝑎𝑟𝑏𝑘𝑛(𝑉 − 𝑉𝐾)                                          (2.6) 

𝐼𝑁𝑆(𝑉) = 𝑔𝑁𝑆(𝑉 − 𝑉𝑁𝑆)                                                             (2.7) 

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉) − 𝑛

𝜏𝑛
                                                                  (2.8) 

𝑥∞(𝑉) =
1

1 + 𝑒
(
𝑣𝑥−𝑉

𝑠𝑥
)

,        𝑥 = 𝑛, 𝑚, 𝑟                                               (2.9) 

𝑑𝑏𝑘𝑛

𝑑𝑡
=

𝑏𝑘𝑛∞
(𝑉, 𝑐𝐷𝑂𝑀) − 𝑏𝑘𝑛

𝜏𝑏𝑘𝑛

                                                  (2.10) 

𝑑𝑏𝑘𝑓

𝑑𝑡
=

𝑏𝑘𝑓∞
(𝑉, 𝑐) − 𝑏𝑘𝑓

𝜏𝑏𝑘𝑓

                                                      (2.11) 

𝑏𝑘𝑛∞
(𝑉, 𝑐𝐷𝑂𝑀) =

1

1 + exp
−(𝑉 − 𝑉𝑏𝑘−𝑛𝑒𝑎𝑟(𝑐𝐷𝑂𝑀))

𝑘𝑏𝑘

                              (2.12) 

𝑏𝑘𝑓∞
(𝑉, 𝑐) =

1

1 + exp
− (𝑉 − 𝑉𝑏𝑘−𝑓𝑎𝑟(𝑐))

𝑘𝑏𝑘

                                          (2.13) 

𝑉𝐵𝐾−𝑛𝑒𝑎𝑟(𝑐𝐷𝑂𝑀) = 𝑉𝐵𝐾0
− 𝑘𝑠ℎ𝑖𝑓𝑡 ln 

𝑐𝐷𝑂𝑀

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

                                    (2.14) 

𝑉𝐵𝐾−𝑓𝑎𝑟(𝑐) = 𝑉𝐵𝐾0
− 𝑘𝑠ℎ𝑖𝑓𝑡 ln

𝑐

𝑘𝐶𝑎𝐵𝐾−𝑓𝑎𝑟

                                            (2.15) 

𝑐𝐷𝑂𝑀 = −𝐴𝐼𝐶𝑎−𝐿(𝑉)                                                              (2.16) 

𝑑𝑐

𝑑𝑡
= −𝑓(𝛼𝐼𝐶𝑎 + 𝑘𝑐𝑐)                                                              (2.17) 



 

 
 

COMPUTATIONAL BIFURCATION ANALYSIS TO FIND DYNAMIC TRANSITIONS OF THE 

CORTICOTROPH MODEL 

 

45 

There are six ionic currents in the model, ICaL is the high voltage activated L-type 

Ca2+ current, IKdr is the rapidly activated delayed rectifier K+ current, IBK-near is the 

large-conductance, voltage and Ca2+-activated K+ channels located near Ca2+ 

channels and respond to Ca2+ in microdomains. IBK-far channels are located away from 

Ca2+ channels and respond to the mean cytosolic Ca2+ concentration. IKir is the inward 

rectifier K+ current that activates under hyperpolarization. Also, Ins in the model is a 

current produced by non-selective-cation channels. n is the gating variable for the 

activation of IKdr current. 𝑥∞(𝑉) shows the steady-state functions. 

 

The gating variables for the near and far populations of BK channels with the 

equilibrium functions are shown with the bkn and bkf equations. Here Cadom is the 

free Ca2+ concentration in a microdomain and c is the mean free cytosolic Ca2+ 

concentration. 

 

Table 1. Parameter values 

Parameters Values Parameter Value 

gCa−L 1.8 nS (basal), 

2.2 nS (CRH) 

kCaBK−near
 18 μM (basal), 6 

μM (CRH) 

gNS 0.1 nS (basal), 

0.2 nS (AVP) 

kCaBK−far
 0.6 μM 

gK 8.2 nS kbk 1 mV 

gK−ir 1 nS sm 10 

gBK−near 2 nS sn 10 

gBK−far 1 nS sr -1 

VCa 60 mV VBK0
 0.1 mV 

VNS -10 mV kshift 20 

VK -75 mV A 0.15 

𝑣r -60 mV 𝑘𝑐 0.12 μM 
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𝑣m -20 mV f 0.01 

𝑣n -5 mV 𝛼 0.0015 

τbkn
 20 ms (basal), 4 

ms (CRH) 

σN 5 pA 

τbkf
 4 ms Cm 6 nF 

 

 

Bifurcation and continuation analysis was conducted in PyDSTool, PYTHON based 

tool for simulating and analyzing dynamical systems. One and two-parameter 

bifurcation diagrams were constructed using AUTO within PyDSTool [12]. 

 
3. Results 

 

We can apply numerical continuation to each rate constants and dynamic parameters 

for currents to determine which oscillations appear or disappear and how these 

transitions between a stable and unstable steady state happens ([13], [14], [15], [16], 

[17]). But experimentally making these changes mostly impossible. In the original 

paper [2], authors saw that making the BK-near channels similar to BK-far channels 

by reducing the time constant and right-shifting its activation curve was sufficient to 

convert spiking to bursting without the need to make any other changes but how this 

transition happens is unknown. Also, with the dynamic clamp study, it has been 

shown that BK-near channel conductance induces bursting in pituitary cells [18]. 

Given the difficulty of teasing apart the system experimentally, understanding the 

dynamic mechanisms behind these transitions and responsible parameters are 

important because this will give us the reason for the changes after stress hormone 

regulation. These shifts in excitability is regulated by two hormones CRH and AVP 

that cause corticotrophs to respond differently to various stressors. Figure 1 shows 

an example of the temporal variations of the voltage 𝑉 as obtained by simulating the 

cell model under conditions where it exhibits a characteristic spiking (Fig. 1a) and 

bursting (Fig. 1b) dynamics after the stimulation with CRH/AVP.  Understanding 

the dynamic mechanisms under these shifts between resting, spiking and bursting is 

important because these results will give us applicable predictions on stress 
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regulation. Therefore, we begin by investigating the changes between spiking and 

bursting behavior for the experimentally observed parameters in section 3.1 first and 

then we will analyze the transitions between resting, spiking and possible bursting 

states in section 3.2 with all conductances using bifurcation analysis. 

 

 

 
Figure 1. Spiking and bursting patterns of the corticotroph model respectively. Parameter 

differences are as follows: Spiking (𝜏𝑏𝑘𝑛
= 20, 𝑔𝑁𝑆 = 0.1, 𝑔𝐶𝑎 = 1.8, 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

= 18), 

Bursting (𝜏𝑏𝑘𝑛
= 4, 𝑔𝑁𝑆 = 0.2, 𝑔𝐶𝑎 = 2.2, 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

= 6). 

 

3.1 Bifurcation analysis for bursting parameters 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 and 𝜏𝑏𝑘𝑛

 

 

In order to investigate the contribution of BK-channel dynamics to the overall 

dynamics and characterize bifurcation types in the model, BK-far and BK-near 

conductances (𝑔𝐵𝐾−𝑛𝑒𝑎𝑟 and 𝑔𝐵𝐾−𝑓𝑎𝑟) are investigated first but no bifurcation is 

observed. That means that BK channel conductances are not responsible for the 

bursting but the parameters for the channel dynamics are. Moreover, two important 

parameters responsible for bursting are: time constant of the BK-near channel 𝜏𝑏𝑘𝑛
 

and activation parameter 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 values, during spiking and bursting regime are 

examined separately.  
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3.1.1 Bifurcation for the BK-channel activation curve parameter ‘𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
’ 

during spiking regime 

 

We start our analysis of the bifurcation structure for spiking regime, the parameter 

values used here are: 𝜏𝑏𝑘𝑛
= 20, 𝑔𝑁𝑆 = 0.1, 𝑔𝐶𝑎 = 1.8. Fig. 2 shows the bifurcation 

diagram of the spiking regime (a) and some voltage traces with different values of 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
. There are two Hopf bifurcations, two saddle-node bifurcations and one 

saddle node on periodic orbit bifurcations as a result of numerical continuation with 

respect to 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameters. For the small values of 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

 parameter, the 

bottom branch of the steady states are stable nodes and the stability lost with the first 

saddle-bode bifurcation (SN1) at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.039949 leading to a branch of 

saddles which again turns around at another saddle-node bifurcation (SN2) 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.03, before regaining stability again via a subcritical Hopf 

bifurcation. Subthreshold oscillations (Fig. 2b blue dashed line) start at subcritical 

Hopf point H1 at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.39944 where unstable steady states turn into stable 

ones with the rise of unstable periodic branch and ends with supercritical Hopf 

bifurcation point H2 at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.1434 where these stable steady states lost 

their stability. Here at saddle-node bifurcation of periodic solutions (SNP) at 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.179, unstable periodic orbits also become stable ones. Here the 

branch of stable periodic spiking solutions emanating from the H2 grows in 

amplitude and period with increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameter. Subthreshold 

oscillations grow in amplitude and become regular spiking that can be seen in Fig. 

2b (orange line). This suggests that for the slow activation of 𝑏𝑘𝑛𝑒𝑎𝑟 channels 

(𝜏𝑏𝑘𝑛
= 20), shifting activation curve right or left by changing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

 does not 

have any physiological role as promoting bursting, instead it only increases the 

frequency of spiking.  
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Figure 2. Bifurcation analysis for BKnear-activation curve parameter kCaBK−near

 during 

spiking regime. a) Bifurcation diagram with kCaBK−near
 as the bifurcation parameter. Stable 

nodes (black line), unstable nodes or saddles (black dashed line), stable periodic orbit 

(magenta line), unstable periodic orbit (magenta dashed line), bifurcation points (red and blue 

dots). SN1 saddle node bifurcation 1, SN2 saddle node bifurcation 2, H1 subcritical hopf 

bifurcation, H2 supercritical hopf bifurcation, SNP saddle-node on periodics bifurcation. b) 

Representative traces of voltage at different values of kCaBK−near
. 

 

3.1.2 Bursting regime and bifurcation for the BK-channel activation curve 

parameter ‘𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
’ 

 

The bifurcation diagram, when 𝜏𝑏𝑘𝑛
= 4 and using 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

 again as the 

bifurcation parameter, is qualitatively different than when 𝜏𝑏𝑘𝑛
= 20 (Fig. 3). 

Saddle-node bifurcations appear the same way and H1 point still rise a subcritical 

hopf bifurcation but there is a homoclinic bifurcation (HC) now just after the hopf 

point (Fig. 3b). Oscillations starting here ends with hyperpolarized resting state and 

with increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameter means that shifting the half activation of BK-

near channel to the right makes hyperpolarized state rises to higher voltages (Fig. 

3c). At H2, supercritical hopf bifurcation starts with periodic branches open to right 

now and stable periodic branches turn to unstable periodic branches at period 

doubling bifurcation (PD) (Fig. 3a). There is a fast spiking between this area (Fig. 

3c). For further increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
, spike doubling behaviour transitions to 

bursting as a result of CRH effect as in original model (Fig. 3d). Firstly, number of 

spikes per burst decreases (Fig. 3e,f) and then the bursting dynamics ends in a 
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different type of process, referred to as a homoclinic bifurcation. Finally, the periodic 

solutions disappear via a homoclinic bifurcation (HC) at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 10.612 

which the period is infinitely large. In the interval of coexisting stable solutions, the 

stable manifold of the saddle point defines the boundary of the basins of attraction 

for the stable node and limit cycle solutions. The basin of attraction for a stable 

solution represents the set of initial conditions from which trajectories 

asymptotically approach the solution. When the limit cycle for increasing values of 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 hits its basin of attraction, another limit cycle appears through period 

doubling bifurcation. The characteristic slowing down of the spiking dynamics as 

the system approaches the end of the bursting phase observed as in Fig. 3e. The 

coordinates (𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
, V) of the bifurcation points are as follows: H1 (0.032, -

58.57), SN1 (0.04, -62.5), SN2 (0.03, -60.2), HC1 (0.03, [-56.84, -61,75]), H2 (1.16, 

-32.26), PD (5.33, [-7.07, -43.72]), HC2 (10.6, [-3.19, -36.3]). As can be seen here, 

bursting arises due to the rapid rate of BK channel activation since we decrease the 

𝜏𝑏𝑘𝑛
 from 20 to 4 and our bifurcation analysis shows that this transition is happening 

with the period doubling bifurcation. 

 

3.1.3 Varying 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 and 𝜏𝑏𝑘𝑛

 simultaneously: codimension-2 analysis 

 

As stated while 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 can induce bursting itself, 𝜏𝑏𝑘𝑛

 may not be able to induce 

bursting by itself. The natural cause of action is thus to investigate what happens as 

these 2 parameters are varied simultaneously. Due to the complexity of the system, 

an analytic codimension analysis is impossible. Therefore, a numerical codimension 

2 analysis will be enough to see the dynamics once we change both parameters 

simultaneously. If we vary two parameters, the curves of Hopf bifurcation is given 

below. We can see there is no oscillatory region between the Hopf points. Bursting 

regime stays after H2 point and Hopf points getting away from each other with 

increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
. In Fig. 4 we can see clearly that time dependency of the 

activation of BK channel alone cannot induce bursting and Hopf bifurcation is not 

responsible for characterizing the route to bursting. 
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Figure 3. Bifurcation analysis for BKnear-activation curve parameter kCaBK−near

 during 

bursting regime. a,b) Bifurcation diagram with kCaBK−near
 as the bifurcation parameter. 

Stable nodes (black line), unstable nodes or saddles (black dashed line), stable periodic orbit 

(magenta line), unstable periodic orbit (magenta dashed line), bifurcation points (red and blue 

dots). SN1 saddle node bifurcation 1, SN2 saddle node bifurcation 2, H1 subcritical hopf 

bifurcation, H2 supercritical hopf bifurcation, HC1 homoclinic bifurcation 1, HC2 

homoclinic bifurcation 2 and PD period doubling bifurcation. c,d,e,f) Representative traces 

of voltage at different values of kCaBK−near
. 

 

3.2 Dependence of model cell behavior on conductances  

 

3.2.1 Non-selective cation conductance 𝒈𝒏𝒔  

 

Duncan et al. [2] showed that increasing the non-selective cation channel 

conductance (𝑔𝑛𝑠) only increases spike frequency as a result of AHP effect. Here we 

examine the bifurcation diagram with respect to 𝑔𝑛𝑠 to see how cell is differing 
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stabilities according to changing non-selective cation current. Also, it is known that 

𝐶𝑎2+ dependent non-selective cation channel may induce bursting in different cells 

([19], [20]). The bifurcation diagram using 𝑔𝑛𝑠 as the initial bifurcation parameter is 

formed an s-shaped curve of steady states and a curve of periodic orbits (Fig. 5a). 

 
Figure 4. Two-parameter bifurcation diagram for 𝜏𝑏𝑘𝑛

 vs. 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
. 

The lower branch of the s-curve consists of stable nodes which correspond to the 

hyperpolarized resting state of the cell. Stability is lost via saddle-node bifurcation 

at (𝑔𝑛𝑠,V) = (0.099, -62.652), and gives rise to a branch of saddles, which forms the 

middle and part of the upper branches of the s-curve. From the Fig. 5a, the periodic 

solutions appearing for low 𝑔𝑛𝑠 via a saddle-node on an invariant circle (SNIC) 

bifurcation and cell shows regular spiking here (Fig. 5b orange line). The saddle-

node bifurcation of equilibrium solutions corresponding to this value of 𝑔𝑛𝑠 is that 

saddle-node point. This branch of saddles is regaining stability at the supercritical 

hopf bifurcation at (𝑔𝑛𝑠, V) = (1.047, -19.97). Here, periodic branches disappear and 

for increasing 𝑔𝑛𝑠 there remains a branch of stable nodes, corresponding to a 

depolarized resting state at around -20mV (Fig. 5c orange dashed line).  

 

Indeed, increasing the maximal conductance of non-selective cation channel only 

increases frequency first (Fig. 5c blue line), then regular spikes turns to subthreshold 

oscillations and does not induce bursting and cell is either hyperpolarized or 
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depolarized state otherwise. As a result, increasing the non-selective cation 

conductance did not initiate that transition to bursting for corticotroph cells, but 

increased burst frequency and decrease amplitude. 

 
Figure 5. Bifurcation analysis for non-selective cation conductance gns. a) Bifurcation 

diagram with gns as the bifurcation parameter. Stable nodes (black line), unstable nodes or 

saddles (black dashed line), stable periodic orbit (magenta line), unstable periodic orbit 

(magenta dashed line), bifurcation points (red and blue dots). SN1 saddle node bifurcation 1, 

SN2 saddle node bifurcation 2, H1 supercritical hopf bifurcation, HC homoclinic bifurcation. 

b,c) Representative traces of voltage at different values of gns. 
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Figure 6. Bifurcation analysis for L-type Ca current conductance 𝑔𝐶𝑎. a) Bifurcation 

diagram with 𝑔𝐶𝑎 as the bifurcation parameter. Stable nodes (black line), unstable nodes or 

saddles (black dashed line), stable periodic orbit (magenta line), unstable periodic orbit 

(magenta dashed line), bifurcation points (red and blue dots). H1 supercritical hopf 

bifurcation, H2 subcritical hopf bifurcation, HC1 homoclinic bifurcation 1, HC2 homoclinic 

bifurcation 2, PD period doubling bifurcation. b,c,d,e,f) Representative traces of voltage at 

different values of 𝑔𝐶𝑎.  

 

3.2.2 L-Type Ca2+-current conductance 𝑔𝐶𝑎 

 

The possibility of other ionic current to generate the bursting activity is examined by 

changing the L-type 𝐶𝑎2+ current conductance 𝑔𝐶𝑎. Fig. 6 shows the one-parameter  



 

 
 

COMPUTATIONAL BIFURCATION ANALYSIS TO FIND DYNAMIC TRANSITIONS OF THE 

CORTICOTROPH MODEL 

 

55 

 

bifurcation diagram where 𝑔𝐶𝑎 is the bifurcation parameter. For the lower values of 

𝑔𝐶𝑎,  only one stable equilibrium point corresponding to the resting potential exists. 

When 𝑔𝐶𝑎 is increased to 0.519, stability is lost via supercritical hopf bifurcation 

(H1) and stable periodic orbits decreases the hyperpolarized resting state with 

increasing 𝑔𝐶𝑎. Spiking starts with a creation of periodic orbits at homoclinic 

bifurcation (HC2) at 𝑔𝐶𝑎 = 1.77 before regaining stability at the subcritical hopf 

bifurcation (H2) at 𝑔𝐶𝑎 = 4.06 and switch spiking to bursting activity at this point. 

Bursting due to the 𝐶𝑎2+ channel was the unexpected and unseen results from the 

experiments. Our bifurcation analysis revealed another link to bursting for 

corticotroph cells that can be tested experimentally. Also, we observe another nice 

dynamic here. A period doubling bifurcation is associated with the loss of stability 

of these periodic solutions. In addition, we observe spike adding cascade at this 

point. As the bifurcation parameter 𝑔𝐶𝑎 increase, the number of spikes per burst 

grows incrementally until bursting transforms into depolarized state (Fig. 6bcdef). 

For increasing 𝑔𝐶𝑎 there remains a branch of stable nodes, corresponding to a 

depolarized resting state of around -10mV. The 𝑔𝐶𝑎 values of the bifurcation points 

are as follows: H1 (0.519), HC1 (0.52), HC2 (1.77), H2 (4.065), PD (4.21).  

 

Here when we look at the voltage traces, spiking starts at the homoclinic point around 

𝑔𝐶𝑎 = 1.8, and before that it is in hyperpolarized state around -65mV. The periodic 

branches that starts from H1 only decreases the resting state from -40mV to -65mV. 

 

3.2.3 Delayed-rectifier potassium conductance 𝑔𝐾 

 

The potential role of delayed rectifier K+ channels in electrical activity was examined 

in various pituitary cells. In GH3 cells, inhibition of this channel increases the 

duration of the AP [21] and the amplitude of the spontaneous [Ca2+] transients [22] 

but in frog melanotrophs, the delayed rectifier K+ conductance, leads to inhibition of 

electrical activity [23]. In rat lactotrophs, on the other hand, does not alter the pattern 

of AP firing [21]. For the corticotrophs, we examine here with the bifurcation 

analysis using 𝑔𝐾 as the initial bifurcation parameter with different steady states and 

a curve of periodic orbits. When we look at the z-shaped curve in Fig. 7a, the lower 



 
 
 

SEVGİ ŞENGÜL AYAN AND AHMET KURT 

 

56 

values of 𝑔𝐾 consists of stable nodes which correspond to the depolarized resting 

state of the cell. Stability is lost via a subcritical hopf bifurcation (H3) at (𝑔𝐾,V) = 

(4.512, -12.810) and cell starts to spike at this point (Fig. 7c). Unstable periodic 

orbits of subcritical hopf bifurcation gains stability with bautin bifurcation also 

known as degenerate hopf bifurcation at B1 point that corresponds to saddle-node 

bifurcation of periodic orbits (Fig. 7b) 

 
Figure 7: Bifurcation analysis for delayed rectifier K+ current conductance 𝑔𝐾. a) Bifurcation 

diagram with 𝑔𝐾 as the bifurcation parameter. Stable nodes (black line), unstable nodes or 

saddles (black dashed line), stable periodic orbit (magenta line), unstable periodic orbit 

(magenta dashed line), bifurcation points (red and blue dots). SN1 saddle node bifurcation 1, 

SN2 saddle node bifurcation 2, H1 subcritical hopf bifurcation 1, H2 supercritical hopf 

bifurcation 2, H3 subcritical hopf bifurcation 3, HC1 homoclinic bifurcation 1, HC2 
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homoclinic bifurcation 2, B1 Bautin bifurcation 1, B2 Bautin bifurcation 2, NS Neimark-

Sacker bifurcation. b,c) Representative traces of voltage at different values of 𝑔𝐾. 

In neural networks, bursting can be observed near bautin bifurcation [24] but in our 

system parameter region is small and this branch of stable orbits lost stability around 

at another bifurcation point, neimark-sacker bifurcation just after B1. For increasing 

𝑔𝐾 , there remains a branch of stable nodes corresponding to a spiking state until it 

vanishes with SNIC bifurcation at around 𝑔𝐾 = 9.455. From the Fig. 7a, the periodic 

solutions disappearing via a saddle-node on an invariant circle (SNIC) bifurcation. 

The saddle-node bifurcation of equilibrium solutions corresponding to this value of 

𝑔𝐾 is that saddle-node point and cell goes in to hyperpolarized state after this point 

(Fig. 7c orange dashed line).  

 

The z-shaped curve of steady-states create different periodic orbits here. The lower 

branch of the z-curve consists of stable nodes which correspond to the 

hyperpolarized resting state of the cell and middle unstable steady states turns to 

stable ones with the creation of unstable periodic orbits with 2 more hopf 

bifurcations, with one supercritical and the other is subcritical ones. Stable periodic 

orbits here lost their stability with another bautin bifurcation at B2 just after H2 point. 

Here again parameter region is so small between H2 and B2 and K+ conductance 

values are so big for real cell. As a result, cell stays in hyperpolarized state in that 

region.  

 

3.2.4 Inward-rectifier Potassium conductance 𝑔𝐾−𝑖𝑟 

 

To complete the full bifurcation analysis in terms of the conductances, lastly, we 

change inward-rectifier potassium current conductance 𝑔𝐾−𝑖𝑟 while others are intact. 

We know that 𝐾𝑖𝑟 channels play important roles in the control of resting membrane 

potential and inhibition of spontaneous electrical activity in pituitary cells [25]. The 

bifurcation diagram, using 𝑔𝐾−𝑖𝑟 as the bifurcation parameter, is shown in Fig. 8a. 

The bottom branch of this curve consists of stable nodes, representing the 

hyperpolarized resting state. There is a saddle-node bifurcation at 𝑔𝐾−𝑖𝑟 = 0.694 

and regular spiking occurs before this point (Fig. 8b). For further increasing 𝑔𝐾−𝑖𝑟, 

firstly spiking slows down (Fig. 8c blue line) and cell turns into hyperpolarized 



 
 
 

SEVGİ ŞENGÜL AYAN AND AHMET KURT 

 

58 

resting state (Fig. 8c orange dashed line) means that it does not have enough 𝐶𝑎2+ 

to fire the action potential anymore. As we can see here, inward rectifier K+ channel 

does not promote bursting for corticotroph cells instead decrease in frequency of 

spiking and spiking to resting state transfer can be achieved with 𝐾 − 𝑖𝑟 channel. 

 

 

 
Figure 8. Bifurcation analysis for inward rectifier K+ current conductance 𝑔𝐾−𝑖𝑟 . a) 

Bifurcation diagram with 𝑔𝐾−𝑖𝑟 as the bifurcation parameter. Stable nodes (black line), 

unstable nodes or saddles (black dashed line), SN saddle node bifurcation. b,c) 

Representative traces of voltage at different values of 𝑔𝐾−𝑖𝑟 . 
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4. Discussion 

 

4.1 Spiking Dynamics 

 

The corticotroph model that the author defined in the previous work is used for the 

numerical bifurcation analysis to understand the dynamics under the transition 

between resting, spiking and bursting behavior. We show that corticotroph cells turn 

from silent phase to spiking phase with different bifurcation structures with the 

dynamic parameters of BK-channel dynamics (𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
) that is experimentally 

observed before and conductances. As 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 is increased subthreshold 

oscillations emerge in the model at subcritical Hopf point. Subthreshold oscillations 

grow in amplitude and become regular spiking through saddle-node bifurcation of 

periodic solutions bifurcation. We observe that cell does not turn back to resting with 

the activation parameter of BK-channels.  

 

The analysis shows that increasing 𝑔𝑛𝑠, 𝑔𝐾 and 𝑔𝐾−𝑖𝑟 channel conductances shifts 

cell from resting to spiking through hopf bifurcations and rheobases are formed from 

saddle-node bifurcations. Here while increasing 𝑔𝑛𝑠 turns the cell into depolarized 

state, increasing 𝑔𝐾 and 𝑔𝐾−𝑖𝑟 conductances shift the cell into hyperpolarized state. 

As a result of our bifurcation analysis with L-type Ca2+ current conductance 𝑔𝐶𝑎, 

spiking starts with a creation of periodic orbits at homoclinic bifurcation, not hopf 

bifurcation as the other conductances. But the most important result was this spiking 

phase does not turn to resting instead we observe bursting behavior as explained in 

4.2. 

 

4.2 Bursting Dynamics 

 

Given the importance of bursting activity in excitable cells, it is important to identify 

the key mechanisms underlying it. Experimental findings have shown that the 

intrinsic bursting of corticotroph cells is driven by BK- channels. But what kind of 

dynamic changes happens during the bursting was unknown. In this study we 

observed that BK channel conductances does not promote any dynamic changes for 
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the cell instead shifting activation curve by 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameter was responsible 

together with activation time parameter 𝜏𝑏𝑘𝑛
 when BK-near channel dynamics was 

fast. During the slow activation of BK-near channels (𝜏𝑏𝑘𝑛
= 20), shifting activation 

curve right or left by changing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 does not have any physiological role as 

promoting bursting, instead it only increases the frequency of spiking.  

 

As can be seen here, first bursting arises due to the rapid rate of BK channel 

activation since we decrease the 𝜏𝑏𝑘𝑛
 from 20 to 4 and transition is happening with 

the period doubling bifurcation and ends with homoclinic bifurcation. So, in our 

system the Hopf bifurcation is not relevant for characterizing the route to bursting 

but period doubling and homoclinic bifurcations are. Period-doubling bifurcation to 

chaos were discovered in spontaneous firings of Onchidium pacemaker neurons [26] 

before. In our system, the actual route depends on the relative location of the full-

system’s fixed point with respect to a homoclinic bifurcation. Stress regulation due 

to BK-channel is also observed experimentally [2] and in our study, we showed how 

this transition happens. But unexpected result is observed with L-type Ca2+ current. 

Hopf bifurcation that turns cell into spiking for other conductances in the model, for 

increasing 𝑔𝐶𝑎 turns the cell into bursting phase this time. The bifurcation analysis 

conducted here revealed another link to stress regulation through Ca2+ channel alone 

and this can give us an experimentally tested prediction from the model [27,28] and 

computational analysis.  

 

5. Conclusion 

 

Bifurcation analysis with numerical continuation algorithm is applied to the 

considered model in order to examine its dynamical states. Characterizing the 

bifurcation structure for BK-channel parameters and conductances in corticotroph 

model to investigate the spiking and bursting regime in the system provides insight 

about the parameter dependence of the model dynamics. We have identified various 

routes from resting to spiking to bursting including Hopf bifurcations, SNIC or 

homoclinic bifurcations, period doubling and spike adding cascades. Also, our work 

shows that dynamical systems theory provides an efficient tool for examination of 
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self-regulation of a full model of the neuroendocrine system. The results of our 

computational investigations may be used as a lead for designing experiments. 
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