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Abstract

With the emergence of new applications (e.g., extended reality and haptics), which require to be

simultaneously served not just with low latency and sufficient reliability, but also with high spectral

efficiency, future networks (i.e., 6G) should be capable of meeting this demand by introducing new

effective transmission designs. Motivated by this, a novel modulation technique termed as orthogonal

frequency division multiplexing with subcarrier power modulation (OFDM-SPM) is proposed for pro-

viding highly spectral-efficient data transmission with low-latency and less-complexity for future 6G

wireless communication systems. OFDM-SPM utilizes the power of subcarriers in OFDM blocks as a

third dimension to convey extra information bits while reducing both complexity and latency compared

to conventional schemes. In this paper, the concept of OFDM-SPM is introduced and its validity as a

future adopted modulation technique is investigated over a wireless multipath Rayleigh fading channel.

The proposed system structure is explained, an analytical expression of the bit error rate (BER) is

derived, and numerical simulations of BER and throughput performances of OFDM-SPM are carried

out. OFDM-SPM is found to greatly enhance the spectral efficiency where it is capable of doubling
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it. Additionally, OFDM-SPM introduces negligible complexity to the system, does not exhibit error

propagation, reduces the transmission delay, and decreases the transmission power by half.

Index Terms

BER, IoT, Multipath Rayleigh Channel, OFDM, Subcarrier Power Modulation, OFDM-SPM Spec-

tral Efficiency, Throughput, Wireless Communication, 5G, 6G, Next Generation, researcher store.

I. INTRODUCTION

THE technological era we live in is continuously witnessing several technological break-

throughs. Many of these upcoming technologies, however, demand requirements which

current-day 4G and 4.5G systems fail to provide. As such, the next generation of 5G communi-

cation systems has been proposed. At the forefront of 5G communication and beyond systems,

one of the core characteristics aimed to be improved is the data rates it can provide and the

spectral efficiency it can achieve [2]. On the other hand, future 6G systems are expected to serve

a new set of applications such as haptics, telemedicine, brain-machine interfaces, mixed reality,

virtual reality, augmented reality, etc. as pointed out in [3], [4], and some other recent studies.

These services require the simultaneous achievement of 1) high spectral efficiency (high data

rates), 2) low latency with good reliability, and 3) low complexity.1.

Aiming to increase data rates, different approaches have been considered in the literature.

Millimeter-wave transmission is one of the approaches that has been proposed to increase data

rates by enabling the utilization of a larger portion of the frequency spectrum [5]. However,

whereas mm-wave transmission provides higher data rates, its deployment has been hindered

by its propagation characteristics as mm-wave communications are highly sensitive to external

variables (e.g., blockage and absorption) and can only propagate for short distances. Furthermore,

cell densification [5], which is a rather conventional approach to improve the data rate in a given

area, is also a possible way that can be used in scenarios of high traffic demands. This approach,

however, incurs high costs of site rents and installation, requires time, and the effect of this

is certainly only bounded to a certain area. Considered highly promising, other Multiplexing

techniques besides Orthogonal Frequency Division Multiplexing (OFDM) have been introduced.

These methods improve the spectral efficiency collectively within the area they are utilized,

1The matlab simulation codes used to generate the results in this paper can be found at https://researcherstore.com/Simulation-

Codes/OFDM-SPM
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rather than improving the spectral efficiency exhibited per user. To this regard, various methods

have been proposed, the most significant being Non-Orthogonal Multiple Access (NOMA) and

Massive Multiple-Input-Multiple-Output (MIMO) [5], [6]. Despite achieving gains in terms of

spectral efficiency, these techniques also introduce their specific drawbacks. This is so because

such techniques are solely focused on improving the area spectral efficiency (i.e., number of

users that can be served in an area) rather than improving the spectral efficiency per device

or user. Besides, such approaches result in large processing latency, an increase in the digital

signal processing complexity of the transceiver design, and low energy utilization efficiency [7].

OFDM based NOMA systems have also been proposed and found to achieve reasonable gains

in spectral efficiency [8]. Another scheme capable of attaining great gains in spectral efficiency

of wireless communication systems is In-band Full Duplex, which has also been proposed and

studied extensively in the literature. This scheme, however, suffers from the self-interference

problem, which it inherently introduces and the complex transceiver structure it requires, in

addition to being incompatible with current wireless devices and standards [9].

Unlike the aforementioned ways that were mostly concentrated on increasing the total system

data rate or throughput by enhancing the area spectral efficiency, other approaches have opted

to enhance the spectral efficiency per device/user by modifying and improving the OFDM

wavefrom, which remains the backbone technology of current wireless standards (e.g., 4G-LTE,

WiFi, WiGig, LiFi, DVB, etc.) as well as upcoming 5G systems. To this end, various novel

techniques have appeared in the literature. For example, the authors in [10] devised the use of a

method which eliminates the need of the cyclic prefix (CP) between OFDM symbols, introducing

what is know as CP-less OFDM, thus achieving gains in spectral efficiency and other performance

metrics. However, an alternative approach which has attracted greater attention in the literature

has been to pair the conventional OFDM waveform with an additional modulation technique that

can create another dimension for conveying extra data per OFDM symbol [11]. Schemes such

as spatial modulation OFDM (SM-OFDM), subcarrier-index modulation OFDM (SIM-OFDM),

OFDM with index modulation (OFDM-IM) and OFDM with subcarrier number modulation

(OFDM-SNM) have been reported in the literature [11]. A comprehensive comparative study

between many of these modulation techniques in terms of various performance metrics in addition

to the working principles of each proposed technique has been given and explained in [11].

These proposed techniques, in addition to utilizing the conventional amplitude and phase of

a symbol, introduce a third data-carrying dimension to transmit and receive more data bits per
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OFDM block. For example, SM-OFDM [12] has utilized the indices of transmitting antennas

as a third data-carrying dimension. SIM-OFDM [13], has instead used the indices of the active

subcarriers in an OFDM block to establish a third dimension which conveys data. OFDM-IM

[14], similar to SIM-OFDM, also focuses on utilizing the indices of the active subcarriers to

carry and interpret extra data bits. OFDM-SNM [15] furthermore, has utilized the number rather

than the indices of active subcarriers of smaller OFDM sub-blocks to convey additional data

bits. Although achieving some gains in spectral efficiency, many of these techniques have been

impeded by certain inherent characteristics whether it is in the transceiver complexity or the

scalability of the scheme. For example, it has been reported that subcarrier index dependant

schemes such as OFDM-SIM and OFDM-IM provide gains mainly at low transmission rates

where the benefits of these schemes incur for high transmission rates erode [16]. This has

further been confirmed by [17]. Additionally, it is important to note that in some schemes such

as OFDM-IM and OFDM-SNM, the deactivation of a certain number of subcarriers of the OFDM

blocks or sub-blocks is an inherent requirement to establish the third data-carrying dimension

and maintain its correct functionality. Consequently, this leads to less symbols being transmitted

and conceptually leads to a decrease in the data rate of these systems when compared to schemes

which utilize all the subcarriers of the OFDM block. This loss in data rate, however, can often

be partially compensated for by the extra data bits conveyed by the additional dimension these

techniques introduce, or other auxiliary methods devised by follow-up research.

For instance, in the case of Multiple Mode (MM)-OFDM-IM [18] and Dual Mode (DM)-

OFDM with Index modulation [19], which build upon OFDM-IM, all subcarriers in the OFDM

symbol are utilized for carrying data symbols, thus yielding better spectral efficiency than plain

OFDM-IM. Follow up research has led to the extension of some of the concepts of these schemes

in different domains including time, frequency, space, code, etc. In [20], a comprehensive survey

is provided on various techniques, which have utilized index modulation in different domains

including the frequency [14], space [12], space-time [21], and space-frequency domains [22],

where a comparison for these scheme in terms of energy and spectral efficiency is provided.

In addition to these, [23] has introduced a number of schemes which build upon OFDM-

IM and proposed algorithms to simultaneously improve both spectral efficiency and physical

layer security [24], [25] of the system, resulting in schemes such as OFDM with Adaptive

Index Modulation and Fixed Constellation Modulation (OFDM-AIM-FCM) and others. Enhanced

OFDM-SNM [26] has also been proposed as an extension of OFDM-SNM with enhanced
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reliability.

Although the aforementioned OFDM-based methods can somehow improve the spectral effi-

ciency/data rates to some extent, but this improvement is usually incremental and unfortunately

comes at the cost of significant increase in complexity, delay, and overhead. However, with the

expected emergence of new types of applications and services including augmented reality (AR),

virtual reality (VR), mixed reality (MR), haptics, brain-machine interfaces, super-high definition

video streaming, and real-time gaming, there will be a new set of requirements that need to

be met simultaneously. These requirements are basically to provide super high throughput per

device while maintaining low-latency, good reliability, and less-complexity. Such requirements

are deemed beyond 5G capabilities as they do not belong to any of the three main use cases that

5G is expected to support, which are mMTC, URLLC, and eMBB [4]. Since 5G cannot meet

such requirements (see Appendix A for more technical details), future 6G and beyond wireless

technologies are indeed required to address such challenges [3], [4], [27], [28].

To meet this demand, in this paper, a novel, low-complexity, and low-latency modulation

scheme, which is capable of adding a third data-carrying dimension to double the spectral

efficiency per device in future 6G and beyond networks, is developed and proposed. By the

manipulation of the power of the OFDM subcarriers as an extra degree of freedom, this scheme

utilizes all the subcarriers of a given OFDM block to convey extra data bits while maintaining

the transmission of the modulated symbols carried by the subcarriers2. The main contributions

of this paper can be summarized as follows:

• The proposition and introduction of a novel modulation scheme known as OFDM-SPM,

and the design of its transceiver structure and working principles.

• The performance analysis of this novel scheme in terms of power and spectral efficiency

is provided. Additionally, an analytical analysis of the theoretical BER of the system is

derived and given in a handy closed-form expression.

• The formulation of two different policies of OFDM-SPM, where one allows power saving,

whereas the other improves BER performance using power reallocation. Furthermore, find-

2While manipulation of transmit power levels had been utilized before to convey additional data that can help eliminate the

necessity for channel estimation, thus attaining reasonable gains such as in [29], the proposed OFDM-SPM scheme, which

utilizes the power of subcarriers in the OFDM structure, is a completely very different technique that offers unprecedented gains

in terms of spectral efficiency with low-complexity.
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ing the optimal values of the power levels which provide the optimal BER performance for

both polices is conducted.

• Providing comprehensive numerical simulation results for OFDM-SPM in terms of BER

and throughput performances under different use cases and for both the power saving and

power reallocation policies.

Comparing the proposed OFDM-SPM3 with conventional OFDM, OFDM-SPM has shown to

offer a significant advantage over conventional OFDM in terms of spectral efficiency. Overall,

OFDM-SPM is superior to conventional OFDM as it offers the following merits:

• The spectral gain which amounts to doubling the spectral efficiency of the system using

only one sinusoidal carrier unlike conventional modulation schemes (e.g., QPSK, M-

QAM, M-PSK) that have to use two orthogonal carriers (sin and cosine) to improve spectral

efficiency. From another standpoint, OFDM-SPM combined with binary phase-shift keying

(BPSK) symbol modulation can transfer as much data as conventional OFDM with BPSK

using only half the number of subcarriers that conventional OFDM requires.

• As the number of subcarriers used by OFDM-SPM is half the number of those used in

conventional OFDM. OFDM-SPM with BPSK also reduces the transmission delay for the

same amount of throughput, since a fewer number of subcarriers translates to fewer resources

in the time domain as well. Furthermore, it is capable of reducing complexity as it can

use half of the IFFT size that OFDM would require for achieving the same throughput.

Also, OFDM-SPM detection process is another source of reducing complexity because it

uses simple threshed-based detectors unlike those schemes that depend on using maximum

likelihood detectors which involve high complexity [20], especially for large mapping tables.

• OFDM-SPM offers flexibility in the option of reducing the transmission power by half while

maintaining the spectral gain, at the expense of some degradation in the BER or reallocating

the saved power for an improvement in the system BER.

The aforementioned merits of OFDM-SPM clearly characterize it as being a system which

requires low complexity as the complexity it adds to the system transceiver structure is minor.

Additionally, it is characterized by small-time delays and offers high spectral efficiency. This

3It has been reported in the literature that in the domain of optical communications, power has been utilized alongside index

modulation as an extra degree of freedom to send extra data bits [30]. This, however, yielded only minor gains in the spectral

efficiency when compared to the proposed wireless-tailored OFDM-SPM scheme.
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makes OFDM-SPM an ideal fit for certain applications in the IoT domain, where low latency,

low complexity, and high efficiency are all required.

The remaining sections of this paper are organized as follows. Section II explains the system

model of the proposed OFDM-SPM scheme. In Section III, the performance analysis is carried

out. Section IV provides the system’s performance demonstration and elaborates on it. Finally,

section V presents the conclusion and future possible works related to the proposed scheme.

II. OFDM-SPM: SYSTEM MODEL

In this section, we explain and illustrate in detail the transmitter and receiver designs of the

proposed OFDM-SPM scheme.

A. The Transmitter Design

OFDM-SPM mainly aims to transmit more bits per subcarrier by manipulating the power

of the subcarriers in an OFDM block in addition to those bits that are usually transmitted by

conventional modulation schemes such as BPSK, M-PSK, etc. The general architecture of the

OFDM-SPM transmitter is depicted in Fig. 1.

Conventional

OFDM

Transmitter

Subcarrier power 

allocator

symbol modulator

Incoming bits

nlog2M 

bits

Assigning 

symbols to 

subcarriers
nlog2M 

bits

(IFFT, CP, 
DAC)

Fig. 1. Transmitter structure of OFDM-SPM.

Unlike the conventional OFDM, OFDM-SPM splits the serial input bit stream of length

2n log2M into two sub-streams of n log2M bits, where n is the number of subcarriers in the

OFDM block used to carry data and M represents the modulation order, which in the case of

BPSK is 2. As such, log2M is the number of bits per symbol according to the symbol modulation

scheme used.
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In this study, we consider pairing the concept of OFDM-SPM with BPSK symbol modulation.

The reasons behind this selection are given as follows:

• To simplify the explanation and interpretation of the proposed OFDM-SPM concept so that

it can be understood clearly and easily.

• The fact that BPSK is the least complex coherent modulation scheme as it uses only

one carrier, resulting in avoiding the I/Q problem that exists in other two-carriers based

modulation schemes such as M-QAM

• Last but not least, BPSK is the most highly reliable modulation scheme where it has the

lowest error rates among all other conventional modulation schemes.

These last two points mentioned above suite very well the 6G use-case (i.e., services that

require low complexity, good reliability, and high spectral efficiency) that we try to satisfy its

requirements by the proposed OFDM-SPM. Nevertheless, the proposed OFDM-SPM concept

can be integrated and paired smoothly with other modulation orders such as QPSK, M-PSK and

M-QAM. This integration process is left for future studies to investigate and quantify the effect

of high modulation orders on the performance of OFDM-SPM.

As can be seen from Fig. 1, one of the substreams determines the power levels of the

subcarriers, where the ith bit determines the power level of the ith subcarrier utilized to carry data.

A ’1’ bit corresponds to setting the power of the respective subcarrier to high and a ’0’ bit to low.

The second sub-stream of bits is modulated using the regular BPSK modulation scheme. The

BPSK symbols are then assigned to their respective subcarriers. Finally, the symbols go through

the remaining steps of the conventional OFDM transmission process, including inverse fast

Fourier transform (IFFT), normal cyclic prefix (CP) addition, and digital-to-analog conversion

(DAC).

Thus, OFDM-SPM results in 4 different constellation points as shown in Fig. 2.

Fig. 2. Constellation points of OFDM-SPM with BPSK.

In Fig. 2, ‘00’ refers to a ‘0’ modulated by BPSK, which is carried by a low power subcarrier

that represents another ’0’ as well. Similarly, ‘11’ refers to a ‘1’ modulated by BPSK, which is
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carried by a high power subcarrier that represents ’1’ as well. Also, ‘01’ corresponds to a ‘1’

modulated by BPSK, which is carried by a low power subcarrier that represent ’0’, and vice

versa as visualized in Fig. 3. Furthermore, L and H denote the low and high power levels of

the subcarriers, respectively, whereas Eb denotes the energy per bit. More specifically, L and H

are factors which determine the power of a subcarrier relative to the power given to a BPSK

symbol, which is generally normalized to unity, such that a subcarrier with H power indicates

a subcarrier with H times the power of a BPSK symbol, and similarly for L.

As the assigned H and L power factors affect the overall bit error rate of the scheme, these

values were chosen optimally in order to minimize this error. This optimization was done under

a constraint that ensures the average energy of an OFDM subcarrier in OFDM-SPM can not

exceed that of a subcarrier in conventional OFDM using BPSK symbol modulation. This allows

a fair comparison between both schemes and ascertains that OFDM-SPM achieves a great gain in

spectral efficiency without requiring additional power. The following example will demonstrate

that OFDM-SPM, in addition to its spectral efficiency gain, requires less power than conventional

OFDM with BPSK to transmit the same amount of data bits.
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Fig. 3. Comparing OFDM-SPM with OFDM, where half the bandwidth and half the power are saved by OFDM-SPM.

Example: To clearly illustrate the merits that OFDM-SPM offers, let us display a case where

both conventional OFDM and OFDM-SPM can be used. Assuming 104 bits were required to be

transferred. Conventional OFDM with BPSK, since it carries only one bit per subcarrier, would

require a total of 104 subcarriers, each requiring bandwidth W and power P. As such the total

resources used by conventional OFDM would be 104W and 104P in terms of bandwidth and

power, respectively. OFDM-SPM on the other hand, would require only 52 subcarriers, as each

subcarrier carries two bits, resulting in a total resource usage of 52W, and 52P.

As illustrated in Fig. 3, OFDM-SPM doubles the spectral efficiency where conventional OFDM

as per the figure uses 2W bandwidth, whereas OFDM-SPM only requires W bandwidth for

the same number of bits transmitted. Additionally, OFDM-SPM reduces the total power usage

by half as a consequence of using only half the number of subcarriers used by conventional
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OFDM. This saved power provides OFDM-SPM with flexibility, since this power can either be

saved or reallocated according to the requirements of the application. Applications requiring low

complexity and low power can benefit from this merit of OFDM-SPM, thus presenting OFDM-

SPM as a favorable modulation scheme for applications such as IoT. For applications requiring

a more highly performing BER, the saved power can be reallocated, which would result in an

enhanced BER performance.

The optimal values of the high and low power levels, which minimize the BER of the scheme

are found by means of a successive process of exhaustive trial and error experiments. The power

levels in the case of power saving and power reallocation policies [13] are defined according to

Eq. (1) and (2)4, respectively.

L2 +H2 = 2Eb (1)

L2 +H2 = 4Eb (2)

.

In the case of power saving for example, Eq. (1) is followed to determine the values of H and

L. By setting the value of H to an arbitrary value, the corresponding value of L can be found

as follows:

L =
√
2Eb −H2 (3)

The optimal values of L and H in the case of power reallocation were found in a similar

manner, but using Eq. (2) instead of Eq. (1).

Various simulations were run for varying values of L and H, the optimal values resulting in

the minimum BER of the scheme were found as L = 0.4213 and H = 1.35 when power is saved

rather than reallocated, and L = 0.5668 and H = 1.918 when power is reallocated.

B. Channel Model

The channel is assumed to be a slowly varying, Rayleigh multi-path fading wireless channel

with K number of exponentially decaying taps, denoted by h = [h0, h1, · · · , h(k−1)] [15], [31].

As such the received symbols in time domain are given as:

y = x~ h+ n, (4)

4A further detailed explanation on Eq. (1) and (2), and how the optimal L and H power levels were found are given in

Appendix B and Appendix C, respectively, for the convenience of the reader.
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where ~ represents the convolution operation. Also, the symbols x, y, h and n are vectors

representing the transmitted time domain samples, received samples in the time domain, the

channel impulse response, and the additive white Gaussian noise, respectively. Furthermore, the

n vector can be statistically characterized by

n ∼ N (0, N0) ,

where the elements (noise samples) of n have zero mean variance equal to N0. Additionally,

the channel is slowly varying in time such that it is assumed to be constant for multiple OFDM

symbols duration before it changes independently in the subsequent time intervals. Eq. (4) can

also be represented in the frequency domain as well, which is more handy to deal with as can

be found in [10] and [31].

C. The Receiver Design

OFDM-SPM has a significant merit in its receiver as its structure is very simple and adds

minor complexity to the overall receiver structure of conventional OFDM (i.e., highly desirable

for future wireless standards). The receiver structure is displayed in Fig. 4. Similar to conventional

OFDM, the incoming data goes through many of the conventional processes of OFDM reception

including ADC, CP removal, FFT, etc. At the symbol demodulation stage, however, the signal

is fed into two parallel blocks for detection. The first block is responsible for non-coherently

detecting the first sequence of bits, which modulated the power levels of the OFDM subcarriers.

By comparing the power levels of each subcarrier to a given threshold T, the power levels can be

detected as high or low, or equally stated the bits can be detected as a ’1’ or a ’0’, respectively.

Particularly, if the power of a subcarrier is greater than the threshold, a ’1’ is detected and vice

versa. This threshold T is optimally determined as the power of the midpoint value between the

high and low amplitude values of the subcarriers. On the other hand, the other detection block

performs conventional coherent BPSK demodulation to the symbols carried by the subcarriers.
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Conventional

OFDM

Receiver

Remove CP, 

FFT)

Subcarrier power 

detection and 

demodulation

Symbol 

Demodulator

Received bits

nlog2M 

bits

nlog2M 

bits

(ADC, 

Fig. 4. Receiver structure of OFDM-SPM.

The midpoint and threshold T used in the detection process for comparison with the power

levels of the received subcarriers follow Eq. (5) and (6), as follows.

midpoint =

(
L+H

2

)
(5)

T =

(
L+H

2

)2

(6)

It is very essential to take note of the minority of the complexity added to the system receiver

structure by the non-coherent detection of the bits conveyed by the power of the subcarriers.

As this detection is done by means of thresholding, which adds negligible complexity to the

system. In terms of complexity, this gives OFDM-SPM an advantage over other schemes such as

OFDM-SNM, OFDM-IM, SIM-OFDM, etc., which usually employ either a maximum likelihood

(ML) detectors for optimum performance, or a log likelihood ratio (LLR) detector for reduced

complexity [11]. Both of these, however, introduce far more complexity to the receiver structure

than that of OFDM-SPM.

III. PERFORMANCE ANALYSIS

A. Power and Spectral Efficiency

Unlike other OFDM-based modulation schemes proposed in the literature for sending addi-

tional data bits by utilizing an extra dimension besides the conventional 2D signal constellation

[11], in OFDM-SPM, all the subcarriers are used for sending data, where there are no inactive

subcarriers and the number of active subcarriers in each OFDM block does not vary. In particular,

since all the subcarriers are utilized for data transmission, measuring the superior spectral and
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power efficiency of OFDM-SPM is rather simple. Referring to Fig. 3, it is evident that OFDM-

SPM always attains a doubling of the spectral efficiency, and a reduction of the transmission

power by half.

B. Bit Error Rate (BER)

As OFDM-SPM transmits two different bit sequences, a bit can be received in error due to

one of two possible reasons. Firstly, a bit can be received in error during the detection of the

power levels of the subcarriers incorrectly. This is because of the combined channel effects of

both the noise and the multipath fading as they can either amplify or attenuate the power of the

subcarriers, leading to the detection of a high power subcarrier as a low power subcarrier and

vice versa. Secondly, an error that can arise from the detection of the BPSK modulated symbols

carried by the subcarriers.

From Fig. 2, it is evident that the power of the subcarrier assigned to a given BPSK symbol

affects its probability of being detected in error. Fig. 2 shows that the constellation points with

low power subcarriers exhibit a smaller minimum Euclidian distance between them causing

them to be more prone to errors. Although this affects the BER performance of OFDM-SPM

negatively, this is partially compensated for by the low probability of error of the constellation

points with high power subcarriers which exhibit a larger Euclidian distance between them.

Therefore, the theoretical BER of OFDM-SPM due to BPSK demodulation is the average of

the BER expressions of its low power and high power BPSK schemes. These expressions are

similar to that of BPSK in a Rayleigh fading channel, and can be found by the addition of a

multiplication factor to account for the different power levels of the subcarriers. Eq. (7), (8) and

(9) display the resulting BER expressions.

BERH =
1

2

(
1−

√√√√ H2 Eb

N0

1 +H2 Eb

N0

)
(7)

BERL =
1

2

(
1−

√√√√ L2 Eb

N0

1 + L2 Eb

N0

)
(8)

BERBPSK =
BERL +BERH

2
(9)
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Furthermore, the analytical expression of the BER resulting from the detection of the power

of the subcarriers is given as per Eq. (10), (11), (12) and (13).

BERP = A+B − C, (10)

where A, B and C are the final terms in the BER expression after the mathematical derivation

and the collection of terms. A, B and C mathematical expressions are found respectively as

follows:

A =
1

2

(
1−

√√√√ (H−L
2

)2 Eb

N0

1 + (H−L
2

)
2 Eb

N0

)
(11)

B =
1

4

(
1−

√√√√ (H+3L
2

)2 Eb

N0

1 + (H+3L
2

)2 Eb

N0

)
(12)

C =
1

4

(
1−

√√√√ (3H+L
2

)2 Eb

N0

1 + (3H+L
2

)2 Eb

N0

)
(13)

Thus, the total average BER of OFDM-SPM with BPSK is theoretically the average of Eq.

(9) and (10).

BEROFDM−SPM =
BERP +BERBPSK

2
(14)

The detailed derivation of this BER formula along with its main expressions’ terms is given

in Appendix D.

It is important to observe that the establishment of the third data-carrying dimension (i.e.,

power domain) by OFDM-SPM does not inherently lead to any kind of error propagation during

the detection stages of the scheme. This is an additional merit for OFDM-SPM, where other

OFDM-based modulation schemes such as SIM-OFDM [32] were rather excessively affected by

the error propagation they induce.

Furthermore, the detection processes of the BPSK bits and power bits can be seen as indepen-

dent, where the detection of the subcarrier power incorrectly does not necessarily incur an error

in the detection of the carried symbol. This is due to the dissimilarity between the detection

processes, where the BPSK detector is coherent, whereas the power detector is non-coherent.

This is so because BPSK detection measures the phase of a carried BPSK symbol, whereas the

power detection involves measuring the power level of the subcarrier.
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IV. PERFORMANCE DEMONSTRATION

Numerical simulations5 displaying the BER and throughput performance of OFDM-SPM were

conducted. Table I shows the simulation parameters adopted in this study. The system was

simulated in a multipath Rayleigh fading environment. The channel is slowly time-varying such

that it is assumed to be constant for a block of OFDM symbols, but changes independently

from one to another. This choice of the channel environment is because a multipath Rayleigh

fading channel strongly mimics the characteristics of realtime wireless channels. Furthermore,

OFDM-SPM has been paired with BPSK symbol modulation in order to test and introduce the

idea of subcarrier power modulation clearly, while avoiding adding extra complexities that may

be related to higher order symbol modulation techniques. Many other prominent techniques have

been introduced and tested under identical conditions, such as in [14], [15], [33], [19], [34], [18]

and [26]. The simulation results are displayed under different power allocation policies.

TABLE I

SIMULATION PARAMETERS

Modulation type BPSK (M = 2)

IFFT / FFT size 64

Subcarriers for data n 52

Symbols allocated for cyclic prefix 16

Number of inactive subcarriers for out of

band emission
12

Number of OFDM symbols 5 × 104

Multipath channel delay samples locations [0 3 5 6 8]

Multipath channel tap power profile (dBm) [0 -8 -17 -21 -25]

A. Power Saving Policy

By referring to Fig. 3, we can see that OFDM-SPM uses only half the number of subcarriers

that conventional OFDM would require to send the same number of data bits. Thus, half the

power used by conventional OFDM is unused (i.e., saved) by OFDM-SPM. In the power saving

policy, this power is saved to match requirements of low power applications (e.g., IoT). This

5The matlab simulation codes used to generate the results in this paper can be found at https://researcherstore.com/Simulation-

Codes/OFDM-SPM
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inherently results in a better power efficiency when compared to conventional OFDM. The power

levels in the simulation of this case are defined as in Eq. (1), and were found as H = 1.35 and

L = 0.4213.
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Fig. 5. BER of OFDM-SPM with power saving policy, where half of the transmit power is saved by OFDM-SPM.

As can be seen from the results in Fig. 5, the performance of OFDM-SPM when compared

to conventional OFDM with BPSK6 displays some degradation in the BER, however at the

expense of this degradation, it can be seen that the throughput is doubled for high values of

SNR amounting to a doubling in the data rate as can be seen from Fig. 6, while reducing the

transmission power by half. Furthermore, even for values as low as 20 dB a throughput of

2 (bits/s/Hz) is observed, which is a large gain in data rate. More detailed discussion on the

trade-off relationship between throughput and BER in OFDM-SPM can be found in Appendix

F.

6The reason why OFDM-SPM is compared to OFDM-BPSK (not OFDM-QPSK) is given in Appendix E.
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Fig. 6. Throughput of OFDM-SPM with power saving policy, where half of the transmit power is saved by OFDM-SPM.

B. Power Reallocation Policy
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Fig. 7. BER of OFDM-SPM with non-optimized power reallocation policy, where the saved power is reallocated to high-power

subcarriers, whereas low-power subcarriers are set with unity power levels. As can be seen, there is about 3dB improvements

in the BER of the bits’ stream modulated by BPSK, while having another additional bits’ stream modulated by SPM.

The power which OFDM-SPM saves can be utilized to the scheme’s advantage. As the power

saving policy shows a degradation in the BER, this saved power can be reallocated to the
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subcarriers of the OFDM symbol, resulting in an enhanced BER. The method through which

the saved power is redistributed amongst the subcarriers will ultimately affect the BER. Power

reallocation is investigated for two different cases.

1) Non-Optimized Power Reallocation Policy: In this scenario, the gain of OFDM-SPM is

clearly displayed. Unlike conventional OFDM, OFDM-SPM can be viewed as a transmission

method that provides two streams of data. One of them being the bits carried by the BPSK

symbols, and the other being the bits carried by the power of the OFDM subcarriers. In this

scheme, the saved power is reallocated or reassigned such that the bit error rate performance

of the bits carried by the BPSK symbols does not degrade but is rather less erroneous than the

case of conventional OFDM. This is done by setting the high power level of the subcarriers to

H = 1.732, and the low power level to L = 1. This BPSK data stream (the red curve in Fig. 7)

exhibits a bit error rate superior to that of conventional OFDM by a 2-3 dB gain as can be seen

in Fig. 7. This is because the high power bits map to constellation points which are further apart

than that of conventional OFDM. Furthermore, an additional data stream is provided by the bits

carried by the power levels of the subcarriers. Although, this power-modulated stream exhibits a

high frequency of errors (the black curve in Fig. 7), it can be seen as a mere additional benefit

to the enhanced BPSK bit error rate. Additionally, this erroneous bit stream can be assigned to

a user application that does not require ultra reliability such as audio streaming services.
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Fig. 8. Throughput of OFDM-SPM with non-optimized power reallocation policy, where the saved power is reallocated to

high-power subcarriers, whereas low-power subcarriers are set with unity power levels.
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Furthermore, the gains in terms of throughput are evident from Fig. 8, as a throughput of 1.95

(bits/s/Hz) is achieved at SNR values as low as 15 dB, and saturates at a throughput value of

2 (bits/s/Hz) at high SNR values. This basically reflects the scheme’s capability in doubling the

spectral efficiency of the system.

2) Optimized Power Reallocation Policy: In this case, the optimal power levels which provide

optimal average BER for OFDM-SPM were found according to Eq. (2). Exhaustive trial and

error optimization was used to find the corresponding optimal H and L values, which were found

as H = 1.918 and L = 0.5668. As Fig. 9 shows, the bit error rate performance of the scheme

is improved by 3 dB compared to the power saving policy presented in Fig. 5. Although a

deterioration in the bit error rate is still observed when compared to conventional OFDM in a

Rayleigh fading channel, the gains that OFDM-SPM offer can outweigh this slight, insignificant

degradation.
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Fig. 9. BER of OFDM-SPM with optimized power reallocation policy, where the optimal power levels that minimize the overall

average error rates are used.

Fig. 10 also displays the throughput performance of OFDM-SPM with optimized power

reallocation, where for values as low as 10 dB a throughput of 1.95 (bits/s/Hz) is observed.
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Fig. 10. Throughput of OFDM-SPM with optimized power reallocation policy, where the optimal power levels that minimize

the overall error rates are used.

V. CONCLUSION

In this paper, a novel modulation technique capable of utilizing a third dimension (power)

to convey extra data bits named as OFDM-SPM was introduced. OFDM-SPM manipulates the

power of the subcarriers of an OFDM block and uses it as an extra degree of freedom to convey

extra data bits. OFDM-SPM, when compared to conventional OFDM was shown to require only

half the number of subcarriers required by conventional OFDM to transmit the same number

of bits. This gives OFDM-SPM many advantages over conventional OFDM, as it doubles the

spectral efficiency, saves power, reduces transmission delays and makes it capable of reducing

complexity as well by using half the IFFT size that conventional OFDM uses. The saved power

can either be saved or reallocated. These two power policies characterize OFDM-SPM with

flexibility to accommodate different applications and use cases. If the power is saved, the scheme

exhibits a certain degree of degradation in the BER in comparison to the BER of conventional

OFDM with BPSK. However, by utilizing the saved power and reallocating it to the subcarriers of

the OFDM symbol, an enhanced BER performance can be achieved while maintaining the other

gains that OFDM-SPM delivers. It is notable to mention that other methods in conjunction with

OFDM-SPM can be used to improve the BER performance such as using coding techniques and

antenna receiver diversity schemes; however, this is left for future research works and studies.
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The inherent working principles of OFDM-SPM allow it to evade various flaws exhibited in

other schemes, where OFDM-SPM does not suffer from the error propagation seen in OFDM-

SIM, and unlike OFDM-IM, its transceiver structure is of negligible complexity (i.e., no ML

detection, no mapping tables, no dependent errors). The complexity that OFDM-SPM adds to the

system transceiver structure is minor and in fact is capable of reducing the system complexity

further by reducing the IFFT size used, while achieving the same throughput that conventional

OFDM can deliver.

Besides, OFDM-SPM can be seen as a scheme capable of transmitting two separate data

streams. By observing the BER curves of OFDM-SPM regardless of the power scheme followed,

it is seen that the stream of bits carried by the power of the subcarriers is more erroneous than

the bits carried by the BPSK symbols. This introduces the possibility of using OFDM-SPM to

serve different users with different bit error rate requirements. However, the investigation of this

research direction is left for future work.

These aforementioned merits of OFDM-SPM without a doubt stress its significance and the

gains it could add to beyond 5G communication systems (e.g., 6G). furthermore, it signifies that

it should be additionally examined and researched from various perspectives, where the pairing

of OFDM-SPM with other schemes can bring better performing schemes. Until now, further

research on this scheme aims at examining OFDM-SPM and its performance when paired with

higher modulation orders to attain even much higher data rates by utilizing both the in-phase and

quadrature subcarrier components such as M-PSK. Being a novel scheme with great potential, it

is of most extreme significance to really comprehend the magnitude of the benefits of OFDM-

SPM, and of the advantages it could bring by utilizing it in future communication systems (6G

and beyond).

APPENDIX A

THE RELATION OF THE PROPOSED OFDM-SPM DESIGN TO 6G NETWORKS

One of the main challenges the existing standardized 5G designs for certain use-cases (e.g.,

URLLC) suffers from is the fact that the subcarrier spacing parameter, which corresponds to

certain numerology in the OFDM waveform, has to be increased and become large enough

to obtain short symbol intervals that are capable of meeting the low latency transmission re-

quirements of URLLC services. However, such large subcarrier spacing used by high-order
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numerologies will inevitably reduce the amount of data rate that can be delivered within a single

time slot, aside from the fact that the signaling overhead would increase in the case of using

short time slots, resulting in significant reduction in the data rate/throughput in an outrageous

manner. This specific shortcoming can make current 5G designs incapable of fulfilling and

satisfying the requirements of new emerging applications such as extended reality (XR) services

(including augmented, mixed, and virtual reality (AR/MR/VR)), haptics (tactile Internet), real-

time gaming, telemedicine, brain-computer interfaces, flying vehicles, and connected autonomous

systems [3]. This is so because such applications require to be simultaneously supported not only

by low latency with good reliability, but also with high throughput through increasing the overall

spectral efficiency per device [24]–[27]. Motivated by this observation, in this paper, a novel,

low-complexity, and low-latency modulation scheme, which is capable of adding a third data-

carrying dimension to double the spectral efficiency per device, is developed and proposed for

meeting the future requirements of 6G and beyond networks.

APPENDIX B

EXPLAINING THE POWER ALLOCATION AND REALLOCATION EQUATIONS

Eq. (1) and (2) are presented once again for the convenience of the reader

L2 +H2 = 2Eb (15)

L2 +H2 = 4Eb (16)

As can be seen from Eq. (15) or equivalently Eq. (1), the constraint upon which the power levels

L and H are found, states that the power of these levels should sum up to two times the bit

energy Eb. This is to ensure that the power factors L and H do not result in an average power per

subcarrier exceeding that which is used by conventional OFDM with BPSK, where the power

per subcarrier is equivalent to Eb. Eq. (1), for the sake of clarity, can be re-written as

L2 +H2

2
= Eb (17)

From Eq. (17), we understand that the average power of the low power and high power subcarriers

must be equal to the bit energy Eb, and given that the appearance of a ’0’ and ’1’ is equiprobable

which is a valid assumption, then the above equation holds.
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Furthermore, the same logic applies to Eq. (16) or equivalently Eq. (2). This equation puts a

constraint on the L and H power levels, such that the power of these levels should sum up to

four times the bit energy Eb, or equally Eq. (2) can be rewritten as follows

L2 +H2

2
= 2Eb (18)

From Eq. (18), we understand that the average power of the low power and high power subcarriers

must be equal to two times the bit energy Eb. This is a fair strategy since a subcarrier in OFDM-

SPM is capable of carrying two bits, which in conventional OFDM with BPSK would require

two subcarriers, thus amounting to two times the bit energy Eb and given that the appearance

of a ’0’ and ’1’ is equiprobable which is a valid assumption, then the above equation holds as

well.

APPENDIX C

FINDING THE OPTIMAL L AND H VALUES

As was mentioned, the optimal values of L and H in Eq. (1) and Eq. (2) were found by an

exhaustive process of trial and error, with small sized increments to ensure that all the possible

values of L and H were spanned, and their resulting performances compared. Taking Eq. (1),

as an example, we set H to an initial value of 1.05, since the bit energy Eb or symbol energy

is normalized to 1, then L can be found as 0.947. The simulations are run with these values

and the results are observed, after that the value of H is incremented slightly by 0.01 and the

corresponding value of L is found, and the results are observed and recorded and so on so forth

until the optimal values of L and H are found. The optimal values of Eq. (2) were found in the

same manner.

APPENDIX D

OFDM-SPM THEORETICAL BER ANALYSIS

By referring to Fig. 2, we can use the constellation points of OFDM-SPM to derive the

analytical expression of the bit error rate of OFDM-SPM. By looking at Fig. 2, it is intuitive to

assume the derivation of the BER expression of OFDM-SPM will be done in a manner similar to

that of 4-PAM. However, the important difference being that the changes exhibited in the BER

expressions of OFDM-SPM will be to simulate the effect of the different Euclidean distances

between the symbols.
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Since the constellation points on the right and left halves of Fig. 2 are symmetric, we can

simply find the probability of error of the points on either half of the constellation diagram and

then multiply the collective result by a factor of 2. Arbitrarily, for demonstration purposes, we

choose the right half of the constellation map.

Our starting point is by observing that the probability of a BPSK symbol at a signal to noise

ratio (SNR) Eb

N0
being found in error due to the effects of noise and the Rayleigh channel response

on it. This effect on the BER performance can be given by the following equation [31]:

BER =
1

2

(
1−

√√√√ Eb

N0

1 + Eb

N0

)
, (19)

where the Euclidean distance between the symbols is a function of ratio between the energy of

the symbols and noise variance (i.e., Eb

N0
). This equation can be used as a basis for finding the

bit error rates of the power detection process of the symbols of OFDM-SPM.

Generally, we have two cases of error in the right half of the constellation map, namely Fig. 2.

Either that a low power symbol is detected as high power symbol, or that a high power symbol

is detected as a low power symbol.

Firstly, we consider the case of a low power symbol being detected as a high power symbol.

This can occur in one of two ways, either the symbol is detected as a high power symbol

with amplitude (H
√
Eb), with a probability of occurrence which can be found similar to that

of Eq. (15), with a small change to simulate the change in the Euclidian distance between the

two symbols. The minimum distance for the symbol to be detected as a symbol of amplitude

(H
√
Eb) is H−L

2
. As such, the probability of this occurring, let’s call it E1:

E1 =
1

2

(
1−

√√√√ (H−L
2

)2 Eb

N0

1 + (H−L
2

)2 Eb

N0

)
(20)

It is also possible that the low power symbol can be detected as a high power symbol with

amplitude (-H
√
Eb) which is less likely to occur but still possible. The minimum distance for the

low power symbol to be detected as such is H+3L
2

, which gives us a probability of occurrence

E2:

E2 =
1

2

(
1−

√√√√ (H+3L
2

)2 Eb

N0

1 + (H+3L
2

)2 Eb

N0

)
(21)
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Assuming an equal probability of occurrence of 0’s and 1’s, the probability of the occurrence

of such a symbol is 1
4
, giving the total probability of error as:

1

4
(E1 + E2) (22)

Now, we come to the probability of a high power symbol being detected as a low power

symbol. Starting from the symbol with amplitude (H
√
Eb), we see that the power bit conveying

the power of this symbol will be detected in error if the symbol is detected as a low power

symbol in either half of the constellation plane; however, if the noise is high enough such that

the symbol is detected as a symbol with amplitude (-H
√
Eb), the power bit detected will not be

in error as the power of the symbol remains high. We can take this into account by subtracting

the probability of this occurring from the probability of the symbol being detected as a low

power symbol. The minimum distance required for the high power symbol to be detected as a

low power symbol is given as H−L
2

, thus we obtain the probability of this occurrence E3 as:

E3 =
1

2

(
1−

√√√√ (H−L
2

)2 Eb

N0

1 + (H−L
2

)2 Eb

N0

)
, (23)

which is identical to Eq. (16). The minimum distance required for the high power symbol in the

right half of the constellation plane to be detected as a high power symbol in the left half plane

is 3H+L
2

. As such, the probability of this occurrence E4 is found as

E4 =
1

2

(
1−

√√√√ (3H+L
2

)2 Eb

N0

1 + (3H+L
2

)2 Eb

N0

)
(24)

Similar to the previous case, the probabilities are multiplied by a factor of 1
4
, and we obtain

the following:

1

4
(E3 − E4) (25)

The total probability of error is thus a sum of the terms in Eq. (22) and Eq. (25). Additionally,

since we assumed symmetry between the symbols of the left half and right half of the constel-

lation plane we multiply each of the expressions in Eq. (22) and Eq. (25) by a factor of 2 to

take into account the error rates of the symbols of the left half plane as well, and because the

terms E1 and E3 are identical, they can be summed. Thus, we are then left with
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E1 +
1

2
E2 −

1

2
E4, (26)

which is identical to the expression given by Eq. (10).

APPENDIX E

THE REASON WHY OFDM-SPM IS COMPARED TO OFDM-BPSK (NOT OFDM-QPSK)

QPSK can be considered as two independent BPSK, each of which uses only one carrier

(sin or cosine) to convey data (i.e., a QPSK signal essentially combines two orthogonally

modulated BPSK signals by simultaneously using two orthogonal carriers). On contrast, the

proposed OFDM-SPM scheme uses only one carrier, which is similar to the case of BPSK.

Accordingly, QPSK consumes twice the power/energy of BPSK. Also, QPSK requires more

complex processing at the receiver as it depends on having strict synchronization between I and

Q components, whereas OFDM-SPM with BPSK does not have such as issue. In addition to

this, for OFDM-SPM with BPSK modulation, the symbol duration for each bit is same as the

bit duration used with conventional OFDM with BPSK, but for QPSK, the symbol duration is

twice the bit duration (symbol duration of QPSK is twice that of BPSK). Thus, using OFDM

with QPSK requires more time to send and receive than using OFDM-SPM with BPSK. Due to

all these reasons, it makes complete sense to compare OFDM-SPM with OFDM-BPSK rather

than OFDM-QPSK.

APPENDIX F

THE TRADE-OFF RELATIONSHIP BETWEEN THROUGHPUT AND BER IN OFDM-SPM

As is the case with most communication designs, the existence of an inherent trade-off between

BER and throughput or spectral efficiency, which are key indicators or metrics used for measuring

the performance of wireless communication systems, is inevitable and unavoidable. Indeed, the

trade-off in the proposed OFDM-SPM totally depends on the way we design OFDM-SPM and

the perspective we look from it. For instance, when we design OFDM-SPM to provide a user

device with two data streams simultaneously with closely similar error probability (as shown in

Fig. 9 and Fig. 10 in the manuscript), then OFDM-SPM does not have much advantage in terms

of BER and shows a slight degradation when compared to the BER of conventional OFDM with
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BPSK, due to using a threshold-based, non-coherent detector for half of the total bits (i.e., the bits

modulated by subcarrier power), which turns out to be an additional advantage due to providing

low-complexity processing that is desirable by IoT devices. On the plus side, OFDM-SPM

doubles the throughput compared to conventional OFDM. On the other hand, when we design

OFDM-SPM to provide two data streams simultaneously but with unequal error probability (as

shown in Fig. 7 and Fig. 8), the stream of data bits modulated by BPBK in the OFDM-SPM

scheme with power reallocation policy shows advantage in terms of BER (around 2-3 dB) and

presents some enhancement when compared to the BER of conventional OFDM with BPSK,

whereas the other data stream encoded in the power of subcarriers in OFDM-SPM is in fact an

additional gain for sending more data bits, but at the expense of some degradation in the BER

(as shown in Fig. 7 and Fig. 8). In general, OFDM-SPM usually opts to focus on doubling the

throughput, and thus introduces a large gain in the throughput without the need for additional

bandwidth, which is very critical and useful for the data-hungry applications that require more

throughput without stringent requirements on the BER such as real-time video streaming.

REFERENCES

[1] A. Hajar, J. M. Hamamreh, M. Abewa, and Y. Belallou, “A spectrally efficient OFDM-based modulation scheme for

future wireless systems,” in2019 Scientific Meeting on Electrical-Electronics Biomedical Engineering and Computer

Science(EBBT), April 2019, pp. 1–4.

[2] Z. E. Ankarali, B. Peköz, and H. Arslan, “Flexible radio access beyond 5G: A future projection on waveform,

numerology,and frame design principles,”IEEE Access, vol. 5, pp. 18 295–18 309, 2017.

[3] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research

problems,”IEEE Network, pp. 1–9, 2019.

[4] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, and J. Wang, “6G technologies: Key drivers, core requirements, system

architectures, and enabling technologies,”IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 18–27, Sep. 2019.

[5] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,”IEEE Communica-

tions Surveys Tutorials, vol. 18, no. 3, pp. 1617–1655, third quarter 2016.

[6] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,”IEEE

Communications Surveys Tutorials, vol. 20, no. 3, pp. 2294–2323, third quarter 2018.

[7] Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and A. Nallanathan, “Non-orthogonal multiple access in massive MIMO aided

heterogeneous networks,” in2016 IEEE Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.

[8] V. Trivedi, K. Ramadan, P. Kumar, M. Dessouky, and F. Abd El-Samie, “Trigonometric transforms and pre-coding strategies

for ofdm-based uplink hybrid multi-carrier non-orthogonal multiple access,”Transactions on Emerging Telecommunications

Technologies, 06 2019.

[9] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless:

Challengesand opportunities,”IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1637–1652, Sep.

2014.



29

[10] J. Hamamreh, Z. Ankarali, and H. Arslan, “CP-less OFDM with alignment signals for enhancing spectral efficiency,reducing

latency, and improving PHY security of 5G services,”IEEE Access, vol. 6, pp. 63 649–63 663, 2018.

[11] A. Jaradat, J. Hamamreh, and H. Arslan, “Modulation options for OFDM-based waveforms: Classification, comparison,and

future directions,”IEEE Access, vol. 7, pp. 17 263–17 278, 2019.

[12] R. Mesleh, H. Haas, C. W. Ahn, and S. Yun, “Spatial modulation – OFDM,” 02 2019.

[13] R. Abu-alhiga and H. Haas, “Subcarrier-index modulation OFDM,” in2009 IEEE 20th International Symposium onPersonal,

Indoor and Mobile Radio Communications, Sep. 2009, pp. 177–181.

[14] E. Basar, Ümit Aygölü öu, E. Panayirci, and H. V. Poor, “Orthogonal frequency division multiplexing with index

modulation,”2012 IEEE Global Communications Conference (GLOBECOM), pp. 4741–4746, 2012.

[15] A. M. Jaradat, J. M. Hamamreh, and H. Arslan, “OFDM with subcarrier number modulation,”IEEE Wireless Communi-

cations Letters, vol. 7, no. 6, pp. 914–917, Dec 2018.

[16] N. Ishikawa, S. Sugiura, and L. Hanzo, “Subcarrier-index modulation aided OFDM - will it work?”IEEE Access, vol.

4,pp. 2580–2593, 2016.

[17] E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, “Index modulation techniques for next-generation

wireless networks,”IEEE Access, vol. 5, pp. 16 693–16 746, 2017.

[18] M. Wen, E. Basar, Q. Li, B. Zheng, and M. Zhang, “Multiple-mode orthogonal frequency division multiplexing with index

modulation,”IEEE Transactions on Communications, vol. 65, no. 9, pp. 3892–3906, Sep. 2017

[19] T. Mao, Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “Dual-mode index modulation aided OFDM,”IEEE Access, vol. 5,pp.

50–60, 2017.

[20] X. Cheng, M. Zhang, M. Wen, and L. Yang, “Index modulation for 5G: Striving to do more with less,”IEEE Wireless

Communications, vol. 25, no. 2, pp. 126–132, April 2018.

[21] M. Wen, X. Cheng, and L. Yang, “Index modulation for 5G wireless communications,” 12 2017.

[22] T. Datta, H. S. Eshwaraiah, and A. Chockalingam, “Generalized space-and-frequency index modulation,”IEEE Transac-

tionson Vehicular Technology, vol. 65, no. 7, pp. 4911–4924, July 2016.

[23] M. Furqan, J. Hamamreh, and H. Arslan, “Adaptive ofdm-im for enhancing physical layer security and spectral efficiency

of future wireless networks,”Wireless Communications and Mobile Computing, vol. 2018, pp. 1–16, 08 2018.

[24] J. M. Hamamreh, H. M. Furqan, and H. Arslan, “Classifications and applications of physical layer security techniques for

confidentiality: A comprehensive survey,”IEEE Commun. Surveys Tut., vol. 21, no. 2, pp. 1773–1828, Second quarter2019.

[25] J. M. Hamamreh and H. Arslan, “Joint PHY/MAC layer security design using ARQ with MRC and null-space

independent,PAPR-aware artificial noise in SISO systems,”IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 6190–6204,

Sep. 2018.

[26] S. Dang, G. Ma, B. Shihada, and M. Alouini, “Enhanced orthogonal frequency-division multiplexing with subcarrier

number modulation,”IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7907–7920, Oct 2019.

[27] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks:

Vision,requirements, architecture, and key technologies,”IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28–41,

Sep.2019.

[28] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,”IEEE Network,vol.

33, no. 4, pp. 70–75, July 2019.

[29] C. Zhang, V. S. Varma, S. Lasaulce, and R. Visoz, “Interference coordination via power domain channel estimation,”IEEE

Transactions on Wireless Communications, vol. 16, no. 10, pp. 6779–6794, Oct 2017.

[30] F. Halabi, L. Chen, S. Parre, S. Barthomeuf, R. P. Giddings, C. Aupetit-Berthelemot, A. Hami ée, and J. M. Tang,



30

“Subcarrier index-power modulated optical OFDM and its performance in IMDD PON systems,”Journal of Light-wave

Technology,vol. 34, no. 9, pp. 2228–2234, May 2016.

[31] J. M. Hamamreh, E. Basar, and H. Arslan, “OFDM-subcarrier index selection for enhancing security and reliability of

5gurllc services,”IEEE Access, vol. 5, pp. 25 863–25 875, 2017.

[32] D. Tsonev, S. Sinanovic, and H. Haas, “Enhanced subcarrier index modulation (SIM) OFDM,” in2011 IEEE GLOBECOM

Workshops (GC Wkshps), Dec 2011, pp. 728–732.

[33] R. Fan, Y. J. Yu, and Y. L. Guan, “Generalization of orthogonal frequency division multiplexing with index modula-

tion,”IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5350–5359, Oct 2015.

[34] T. Mao, Q. Wang, and Z. Wang, “Generalized dual-mode index modulation aided ofdm,”IEEE Communications Letters,vol.

21, no. 4, pp. 761–764, April 2017.

Jehad M. Hamamreh received the B.Sc. degree in electrical and telecommunication engineering from

An-Najah University, Nablus, in 2013, and the Ph.D. degree in electrical-electronics engineering and cyber

systems from Istanbul Medipol University, Turkey, in 2018. He was a Researcher with the Department of

Electrical and Computer Engineering, Texas A and M University. He is currently an Assistant Professor

with the Electrical and Electronics Engineering Department, Antalya International (Bilim) University,

Turkey. His current research interests include wireless physical and MAC layers security, orthogonal

frequency-division multiplexing multiple-input multiple-output systems, advanced waveforms design, multi-dimensional modu-

lation techniques, and orthogonal/non-orthogonal multiple access schemes for future wireless systems. He is a regular investigator

and referee for various scientific journals as well as a TPC Member for several international conferences. He can be reached

via e-mail: jehad.hamamreh@gmail.com // web: https://sites.google.com/view/wislab.

Abdulwahab Hajar recently received his B.Sc from the department of electrical and electronics engi-

neering, Antalya Bilim University in Antalya, Turkey.

He is the co-author of three publications, and has worked with professor Jehad M. Hamamreh on the

topic of OFDM-SPM.



31

Mohamedou Abewa recently received his B.Sc in electrical and electronics engineering from Antalya

Bilim University. He is the co-author of three publications, and is currently working with professor Jehad

M. Hamamreh on the topic of OFDM-SPM.


	I Introduction
	II OFDM-SPM: System Model
	II-A The Transmitter Design
	II-B Channel Model
	II-C The Receiver Design

	III Performance Analysis
	III-A Power and Spectral Efficiency
	III-B Bit Error Rate (BER)

	IV Performance Demonstration
	IV-A Power Saving Policy
	IV-B Power Reallocation Policy
	IV-B1 Non-Optimized Power Reallocation Policy
	IV-B2 Optimized Power Reallocation Policy


	V Conclusion
	Appendix A: The relation of the proposed OFDM-SPM design to 6G networks
	Appendix B: Explaining the Power Allocation and Reallocation Equations
	Appendix C: Finding the optimal L and H values
	Appendix D: OFDM-SPM Theoretical BER Analysis
	Appendix E: The reason why OFDM-SPM is compared to OFDM-BPSK (not OFDM-QPSK)
	Appendix F: The trade-off relationship between Throughput and BER in OFDM-SPM
	References
	Biographies
	Jehad M. Hamamreh
	Abdulwahab Hajar
	Mohamedou Abewa


