
RESEARCH ARTICLE

Independent effects on cellular and humoral

immune responses underlie genotype-by-

genotype interactions between Drosophila

and parasitoids

Alexandre B. LeitãoID
1*, Xueni Bian1, Jonathan P. DayID

1, Simone PittonID
1¤,

Eşref Demir1,2, Francis M. JigginsID
1*

1 Department of Genetics, University of Cambridge, Cambridge, United Kingdom, 2 Antalya Bilim University,

Faculty of Engineering, Department of Material Science and Nanotechnology Engineering, Dosemealti,

Antalya, Turkey

¤ Current address: Università degli Studi di Milano, Dipartimento di Bioscienze, Milano, MI

* ac2016@cam.ac.uk (ABL); fmj1001@hermes.cam.ac.uk (FMJ)

Abstract

It is common to find abundant genetic variation in host resistance and parasite infectivity

within populations, with the outcome of infection frequently depending on genotype-specific

interactions. Underlying these effects are complex immune defenses that are under the con-

trol of both host and parasite genes. We have found extensive variation in Drosophila mela-

nogaster’s immune response against the parasitoid wasp Leptopilina boulardi. Some

aspects of the immune response, such as phenoloxidase activity, are predominantly

affected by the host genotype. Some, such as upregulation of the complement-like protein

Tep1, are controlled by the parasite genotype. Others, like the differentiation of immune

cells called lamellocytes, depend on the specific combination of host and parasite geno-

types. These observations illustrate how the outcome of infection depends on independent

genetic effects on different aspects of host immunity. As parasite-killing results from the con-

certed action of different components of the immune response, these observations provide

a physiological mechanism to generate phenomena like epistasis and genotype-interactions

that underlie models of coevolution.

Author summary

In many species individuals differ greatly in how resistant they are to infection. Resistance

frequently depends on the combination of host and parasite genomes—a host which is

resistant to one parasite genotype may be susceptible to a different genotype. This has

important evolutionary consequences, maintaining genetic variation in populations and

driving dynamic changes in the frequency of the genetic variants involved. To understand

how differences in the immune response give rise to these genetic interactions, we have

studied a parasitic wasp that lays its eggs within the larvae of the fruit fly Drosophila mela-
nogaster. We found that some aspects of the immune response are affected by the host
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genome, some by the parasite genome, and some by the specific combination of host and

parasite. However, no single component of the immune response could predict whether a

host killed the parasite. Our results demonstrate how a complex interplay between host

and parasite genomes controls different aspects of immunity, ultimately determining

whether the host can resist infection.

Introduction

When a host is exposed to a parasite, the likelihood of infection and the subsequent severity of

disease are frequently affected by both the host and parasite genotypes. Frequently, the out-

come of infection depends on the combination of host and parasite genotypes, such that the

susceptibility of a host to one parasite genotype does not predict its susceptibility to a different

parasite genotype [1]. These genotype by genotype (GxG) interactions, where the outcome of

infection is the product of host and parasite genotypes, have important consequences. They

underpin many theoretical models of coevolution, and can maintain genetic variation within

populations [2] or favour the evolution of recombination and sexual reproduction [3]. Simi-

larly, key traits in epidemiology, such as transmission, virulence and recovery, may frequently

be the product of GxG interactions [1].

The success of an infection is frequently determined by the host immune response. These

are complex traits that are typically comprised of cellular processes, such as phagocytosis, and

humoral processes, such as production of antimicrobial peptides [4]. These immune responses

are not only under the control of host genes, as parasites have evolved a myriad of ways to sup-

press these immune defences or avoid triggering them in the first place [5]. Other aspects of

host and parasite biology, from behaviour to anatomy, also affect infection. Therefore, genetic

variation affecting the outcomes of infection, such as infectivity, pathogen load or disease

severity, is likely the result of multiple independent effects on different aspects of the immune

response or other traits.

How these processes generate the specificity of attack and defense seen in GxG interactions

is well-characterized in many plant-pathogen systems [6], but is only beginning to be under-

stood in animals. The genetic loci or the precise genetic variants underlying specific resistance

have been identified in model systems such as sigma virus resistance in Drosophila [7–9] and

Pasteuria ramosa resistance in the water flea Daphnia magna [10]. In D. magna there are

strong GxG interactions mediated by the ability of parasite spores to attach to the host esopha-

gus [11]. Elsewhere, genetic specificity arises from the immune system. Perhaps the best

understood case is the vertebrate MHC complex, where different host MHC-I and MHC-II

alleles encode molecules that present different repertoires of pathogen-derived peptides to

immune cells. During the course of an infection HIV can escape from specific MHC-I mole-

cules by altering the sequence of these peptides, thereby generating GXG interactions [12]. In

insects, transcriptomic analyses between bumblebees and their trypanosomatid parasites have

suggested that differences in immune response can also give rise to GxG interactions [13].

However, the innate immune system of insects relies to a large extent on conserved pathogen

molecules known as PAMPs (pathogen associated molecular patterns) to detect infection [4].

This may make recognition a less common source of GxG interactions than for vertebrate

MHC. Instead, the genotype-specific immune response of bumblebees may result to arise

from interactions between pathogen molecules that suppress immunity and their targets in the

host [13].

Genotype-by-genotype interactions between Drosophila and parasitoids

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008084 October 7, 2019 2 / 13

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.ppat.1008084


Understanding the effects of host and parasite genotype on different immune defences is

important because it may alter their evolutionary dynamics. Immune traits controlled by

strong GxG interactions are likely to experience fluctuating selection through time and space,

while traits under the control of just the host or parasite genomes may be under directional or

stabilizing selection [14–16]. Traits with little genetic variation may play little role in coevolu-

tion. Of particular interest is whether the genetic variation in the host and parasite population

affects the same or different traits, and how effects on different traits combine to determine the

outcome of infection and generate GxG interactions. These ideas have been discussed in detail

for linear stepwise processes during infection, especially in Daphnia magna (eg exposure-

>attachment->penetration->infection) [14–18]. However, parasite killing frequently relies

on the concerted action of multiple immune factors that are not connected in a linear fashion,

so how genetic variation in different immune traits alters the outcome of infection may be

complex.

We have investigated how host genotype, parasite genotype and G x G interactions affect

different components of Drosophila melanogaster’s immune response to the parasitoid wasp

Leptopilina boulardi. Parasitoids are the most important parasites known in natural popula-

tions of D. melanogaster, sometimes infecting the majority of individuals in the population

[19]. There is considerable genetic variation in the susceptibility of D. melanogaster to L. bou-
lardi—Drosophila populations can rapidly evolve resistance in response to artificial selection

[20,21] and there are marked differences in the resistance of different populations [22]. Simi-

larly, the virulence of L. boulardi varies genetically, again with extensive geographical variation

[23]. Whether the host or parasitoid survives depends on the combination of host and parasit-

oid genotype, with the most virulent parasitoids surviving the immune response even in genet-

ically resistant hosts [24]. This previous work on the interaction of host and parasitoid

genotypes has focused on the final outcome of infection—whether the host immune response

can kill the parasite. Here, we have sampled host and parasite genotypes across the full range

of resistance and virulence to investigate the immunological basis of this variation.

D. melanogaster larvae have a dedicated immune response to fight parasitoid infection.

Upon infection hemocytes (blood cells) proliferate, migrate into circulation, and differentiate

into a specialized cell type called lamellocytes [25]. Alongside these cellular changes, humoral

factors are upregulated and a proteolytic cascade activates the phenoloxidase enzyme, catalyz-

ing the production of melanin [26]. If the immune response is successful, parasitoid wasp eggs

or larvae are surrounded by layers of plasmatocytes and lamellocytes and melanized. To sabo-

tage these immune defenses, L. boulardi injects fly larvae with venom that suppresses the dif-

ferentiation of lamellocytes [27], induces changes in lamellocyte morphology [28] and inhibits

the phenoloxidase cascade [29]. Here we investigate how these different aspects of the anti-par-

asitoid immune response are influenced by the host and parasite genotypes.

Results

Suppression of the encapsulation response explains differences in

parasitoid virulence but not host resistance

When an insect is infected with a parasitoid, either the host or the parasite will die. To study

the effects of the host and parasitoid genotypes on the outcome of infection, we infected six

inbred D. melanogaster lines with two L. boulardi lines. The parasitoid lines were selected

because they differ in virulence [20,30]. The Drosophila lines were selected from the Drosophila
genetic reference panel (DGRP) [31] on the basis of preliminary experiments showing they

varied in their resistance. We scored whether Drosophila had mounted a successful immune

response against the parasitoid by the presence of a black melanized capsule around the wasp

Genotype-by-genotype interactions between Drosophila and parasitoids
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egg or larva. When a Drosophila larva is parasitised, it is common to find that both the host

and parasitoid dies. If this is the case, Drosophila often dies as a pupa. Hence, we not only esti-

mated encapsulation rates by dissecting Drosophila larvae 48h hours post parasitism (Fig 1A),

but we also recorded the proportion of parasitised larvae that survived to adulthood (S1A Fig).

There was a large effect of both the parasitoid and host genotype on encapsulation rates.

Confirming published results, the G486 parasitoid line was more frequently encapsulated [30]

than the NSRef line [20] (Figs 1A and S1A). The host genotypes also differed considerably in

their resistance, with encapsulation rates after G486 infection ranging from 8–78% (Fig 1A).

Despite NSRef killing the large majority of flies regardless of the Drosophila genotype, there

was still a significant GxG interaction affecting the probability of encapsulation (Fig 1A; host

genotype x parasitoid treatment interaction: χ2 = 47.81, d.f. = 5, p = 4x10-8). This can be seen

as the two genotypes with the lowest chance of encapsulating G486 parasitoids are the most

likely to encapsulate NSRef parasitoids (Fig 1A). The results were similar when we measured

the survival of flies to adulthood after parasitism (S1A Fig). A high percentage of Drosophila
larvae were parasitised (77%-95%), and neither the host nor parasite genotype affected the rate

that larvae were attacked (S1B Fig; host genotype: χ2 = 8.26, d.f. = 5, p = 0.14; host genotype x

parasite genotype: χ2 = 1.69, d.f. = 5, p = 0.89).

As L. boulardi injects venoms that suppress the encapsulation response [5], we tested

whether differences in systemic immune suppression could explain the effects of Drosophila or

L. boulardi genotype. We first allowed the wasps to parasitise the Drosophila larvae and then

injected a droplet of oil (the oil contained homogenized L. boulardi to elicit a strong melani-

zation response). In the parasitoid-free controls the oil droplet triggers a strong encapsulation

response in all the Drosophila lines (Fig 1B). This is weakly suppressed after G486 infection

Fig 1. Resistance of six Drosophila genotypes to two parasitoid genotypes. (A) Proportion of Drosophila larvae encapsulating L.

boulardi. (B) Proportion of oil droplets injected onto Drosophila larvae that were melanised. The larvae were previously parasitized

by L. boulardi or were parasitoid-free controls. Bars are standard errors. Samples sizes per data point in panel A were a mean of 55

larvae and in panel B 38 larvae (full details are in S1 Table).

https://doi.org/10.1371/journal.ppat.1008084.g001
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and strongly suppressed after NSRef infection (Fig 1B; main effect parasitoid genotype, exclud-

ing uninfected controls: χ2 = 68.93, d.f. = 1, p<10−10). This indicates that the effect of parasite

genotype on encapsulation rates is due to differences in systemic suppression of the host’s

immune response.

In contrast, differences in the resistance of the host genotypes to infection do not reflect dif-

ferences in immune suppression. The Drosophila lines do not vary significantly in their ability

to melanise oil droplets (Fig 1B; main effect host genotype, excluding uninfected controls: χ2 =

9.89, d.f. = 5, p = 0.08). Furthermore, the two lines that are very susceptible to G486 infection

do not suffer from unusually strong immune suppression (Fig 1A versus 1B). Overall there

was no evidence that the Drosophila genotype affected the degree of immune suppression by

the parasitoid (Fig 1B; host genotype x parasitoid treatment interaction, excluding uninfected

controls: χ2 = 6.90, d.f. = 5, p = 0.23).

Genotype by genotype interactions control the proliferation and

differentiation of hemocytes

After parasitoid infection Drosophila hemocytes proliferate and move into circulation [25].

This increase in hemocyte numbers was strongly influenced by GxG interactions (Fig 2A; host

genotype x parasitoid treatment interaction, excluding uninfected controls: χ2 = 19.00, d.f. = 5,

p = 0.002). Two Drosophila lines have higher numbers of circulating hemocytes following

G486 infection while the remaining lines had more after NSRef infection. Similar effects are

seen when comparing the uninfected controls to the infected larvae—the Drosophila line with

the highest number of hemocytes before infection had relatively low numbers after infection

(Fig 2A, line 437). Similar effects are seen when the number of plasmatocytes is measured

rather than the total number of hemocytes (S2 Fig). Despite the strong genetic effects on this

Fig 2. Cellular immune response of six Drosophila genotypes to two parasitoid genotypes. (A) The concentration of circulating hemocytes

in control and infected Drosophila larvae. (B) The proportion of circulating hemocytes that are lamellocytes in control and infected

Drosophila larvae. The lamellocyte proportions are coefficients estimated from a GLM. Bars are standard errors. There are a mean of 10.7

hemocyte counts per data point (each involved bleeding 10–12 larvae; full details are in S1 Table).

https://doi.org/10.1371/journal.ppat.1008084.g002
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critical component of the immune response, the changes in hemocyte numbers do not predict

the outcome of infection (Figs 1A versus 2A and S3; Pearson Correlation: r2 = 0.09, p = 0.35).

Parasitoid infection also causes hemocytes to differentiate into cells with a specialized anti-

parasitoid function called lamellocytes. This process was influenced by striking GxG interac-

tions (Fig 2B; host genotype x parasitoid treatment interaction, excluding uninfected controls:

χ2 = 37.55, d.f. = 5, p = 4.7x10-7). While infections with both parasitoid genotypes results in the

differentiation of lamellocytes in all the Drosophila lines (Fig 2B), the magnitude of this effect

differs greatly between host-parasitoid combinations. In one Drosophila line lamellocytes were

abundant without infection, suggesting that this aspect of the immune response was constitu-

tively active (Fig 2B, line 437). If the absolute number of lamellocytes is examined rather than

the proportion, the overall pattern is similar (S2B Fig).

As was the case for hemocyte numbers, the induction of lamellocytes does not predict the

final outcome of infection (Figs 1A versus 2B and S3; Pearson Correlation: r2 = 0.03, p = 0.58).

For example, of the two host genotypes with very low survival rates after G486 infection, one

had the lowest rate of lamellocyte differentiation and the other had the highest rate (Figs 1A

and 2B). Similarly, despite the NSRef parasitoid line being highly virulent against all the Dro-
sophila lines, in three lines it induces high rates of differentiation.

Different components of the humoral immune response are affected by

host or parasitoid genotype

We found only one of our parasitoid genotypes upregulated Tep1, which encodes a secreted

complement-like protein that is up-regulated upon L.boulardi infection [32] and is involved in

the encapsulation response [33]. The expression of the gene in NSRef-infected larvae did not

differ from the uninfected controls (Fig 3A; comparison of NSRef infection to control:

F = 0.97, d.f. = 1,84, p = 0.33). In contrast, following G486 infection Tep1 expression increased

considerably (Fig 3A; comparison of G486 infection to control, main effect wasp infection:

F = 178.00, d.f. = 1,84, p<10−10). The magnitude of this induction by G486 varied between 3

and 35 fold depending on the Drosophila genotype (Fig 3A; comparison of G486 infection to

control, host genotype x wasp infection interaction: F = 28.48, d.f. = 5,84, p = 0.0004). Inspec-

tion of the data shows that these differences are driven by the expression of Tep1 rather than

the reference gene we used to normalize expression (Cambridge Data Repository: https://doi.

org/10.17863/CAM.44113). Overall, levels of Tep1 expression are correlated with the rate para-

sitoids are encapsulated (S3 Fig; Pearson Correlation: r2 = 0.56, p = 0.005). This arises because

the gene is only upregulated by the less virulent parasitoid genotype, and there is no associa-

tion with differences in the resistance of different hosts challenged by the same parasitoid (Figs

3A versus 1A).

The melanization of the parasitoid relies upon activation of the enzyme phenoloxidase. We

estimated phenoloxidase activity in hemolymph samples through the conversion of L-DOPA

into dopachrome. There is a high variation for the trait between DGRP lines but no effect of

the parasite infection (Fig 3B; main effect Drosophila genotype: F = 30.7, d.f. = 1,182, p = 1 x

10−7; main effect parasitoid treatment: F = 1.63, d.f. = 2,182, p = 0.20). Phenoloxidase activity

alone does not correlate with the rate that parasitoids are encapsulated (Figs 3B versus 1A and

S3; Pearson Correlation: r2 = 0.05, p = 0.47).

Discussion

Parasitoids are an extreme form of parasite where onward transmission requires the host to be

killed. In line with previous studies of D. melanogaster and L. boulardi, we found that both the

host and parasite genotype has a considerable effect on which party survives [26]. Similarly

Genotype-by-genotype interactions between Drosophila and parasitoids
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strong genetic affects were also apparent when we examined specific components of the anti-

parasitoid immune response. However, the genetic effects on each immune component were

largely independent–when one aspect of the immune response was compromised it predicted

little about other aspects of immunity. Furthermore, whether the host genotype, the parasite

genotype or GxG interactions were important depends on which component of the immune

response is measured. GxG interactions may be even more widespread across the immune sys-

tem than we report as we only sampled a small number of host and parasite genotypes.

Our results suggest that immune suppression is critically important in determining the out-

come of infection. Fly larvae that had been parasitised by the most virulent wasp genotype

were unable to melanize droplets of oil, indicating that the wasp is systemically suppressing the

encapsulation response. This is consistent with previous studies showing that L. boulardi
injects Drosophila larvae with venom containing potent immune suppressors, and the compo-

sition and activity of venoms produced by different L. boulardi genotypes varies greatly [34–

36]. These immunosuppressive venoms may explain why the virulent wasp genotype in our

experiments does not induce the expression of the complement protein Tep1. In the mosquito

Anopheles gambiae a polymorphism in a Tep strongly affects the melanization response against

malaria parasites [37], while in Drosophila Tep proteins are important in encapsulating para-

sitoids [33]. Therefore, the suppression of Tep expression may be the mechanism by which

encapsulation is being suppressed in our experiments.

Interactions between immune suppressors and their targets in the host may underlie the

strong GxG interactions we observed in other immune traits, especially hemocyte differentia-

tion. Highly specific immune defences have long-puzzled immunologists working on arthro-

pods, as recognition proteins and effectors in the innate immune system are typically effective

Fig 3. Humoral immune response of six Drosophila genotypes to two parasitoid genotypes. (A) Tep1 expression relative to RpL32 expression measured by

quantitative PCR. (B) Phenoloxidase activity in the hemolymph of Drosophila larvae, measured by 490nm light absorbance due to conversion of L-DOPA into

dopachrome. Larvae were incubated for 24h post infection in (A) and (B). Bars are standard errors. Each data point in panel A is estimated from 8 pools of 10

larvae and in panel B is from a mean of 10.6 pools of 20–25 larvae (details in S1 Table).

https://doi.org/10.1371/journal.ppat.1008084.g003
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against broad classes of pathogen [38]. However, molecular arms races between immune sup-

pressors and the host molecules they target provide a mechanism to generate these specificities.

This is supported by a study of trypanosomatid resistance in bumblebees, where immune sup-

pression has been proposed to explain GxG interactions [13]. Given the ubiquity of immune

suppression and evasion across all groups of parasites [39], this may be a common mechanism

giving rise to GxG interactions.

In our data, there was no single immune component that explained differences in host

resistance (S3 Fig). While Tep1 expression is correlated with encapsulation rates, it can only

explain the effects of parasite genotype and not host genotype. Other immune parameters are

not significantly associated with encapsulation. This is particularly surprising for hemocyte

number, as the number of hemocytes strongly increases when populations are artificially

selected for parasitoid resistance [20,40]. However, our small sample of genotypes prevents us

statistically disentangling how the concerted effect of multiple immune traits determines

whether a parasite is killed. The details of how immune traits combine to produce resistance

may have important implications for coevolution. For example, if parasite-killing requires

both hemocyte differentiation and high phenoloxidase activity, then only genotypes with

alleles for both these traits will be resistant. The resulting epistasis may have important conse-

quences for the process of coevolution [41].

In many species GxG interactions between hosts and parasites affect the outcome of infec-

tion, and our results illustrate two different physiological mechanisms by which these interac-

tions could arise. First, one component of the immune response could be affected by host

genotype and another by parasite genotype, as we saw for Tep1 expression and phenoloxidase

activity. If parasite killing requires both aspects of the immune response, the outcome of infec-

tion will be determined by a GxG interaction. Second, a single physiological response might

only be triggered by specific host-parasite genotype combinations, as we saw for lamellocyte

differentiation.

Material and methods

Fly and wasp maintenance

Stocks were maintained and experiments performed on cornmeal food (per 1200ml water: 13g

agar, 105g dextrose, 105g maize, 23g yeast, 35ml Nipagin 10% w/v). Animals were kept at

25˚C, in a 14 hours light/10 hours dark cycle and 70% humidity.

Six inbred lines from the Drosophila melanogaster genetic reference panel [31] were used in

this study: DGRP-437, DGRP-491, DGRP-566, DGRP-589, DGRP-748, DGRP-892. Drosoph-
ila stocks were maintained by transferring the flies into fresh food every 15 to 19 days. Two

Leptopilina boulardi strains were used in this study. The G486 strain [30] has low virulence

and NSRef [42] is a highly virulent strain. A susceptible outbred population of D. melanogaster
was used to maintain both wasp strains. Eggs from overnight egg lays were collected from agar

plates into 1.5ml microcentrifuge tubes in 500μl PBS. 6μl of eggs in PBS (~60 eggs) were trans-

ferred into cornmeal food vials and 2 female wasps and one male wasp were added. Vials were

incubated for 25 days at 25˚C before adult wasps were collected. Adult wasps were maintained

in cornmeal vials with a drop of honey up to 10 days before being used for infections.

Encapsulation assay

Drosophila strains were allowed to lay eggs on agar plates overnight (from 6pm to 9am). Eggs

were collected in 1.5ml microcentrifuge tubes in 500μl PBS. 15μl of eggs in PBS (~150 eggs)

were transferred to cornmeal food plates (50mm diameter) and kept at 25˚C for 48h. At this

time point, animals were between 48 hours and 63 hours old. In these conditions, all strains
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used in this study were either in late first or early second instar stage. Second instar larvae were

then selected and gently picked with forceps and transferred into food vials (40 larvae per vial).

Three female wasps were added to each vial and removed after three hours. To estimate encap-

sulation rates in adults, vials were incubated for 12 days and emerging flies squashed between

two glass slides to score the presence of a capsule. The encapsulation rate was calculated as the

number of flies with capsules divided by the total number of infected larvae in the vial (40

minus the number of flies without capsules). To estimate encapsulation rates directly in larvae,

larvae were dissected in PBS (phosphate buffered saline) 48 hours post-infection to determine

the presence of encapsulated wasp egg/larva or a live wasp larva.

Oil droplet melanisation

Wasp extracts were prepared by homogenizing 20 L.boulardi G486 males in 200μl of paraffin oil

(Sigma-Aldrich M5904) with a pestle in a 1.5ml microcentrifuge tube. Extracts were centrifuged

for 2m 30s at 500g. The supernatant was transferred into a new 1.5ml microcentrifuge tube and

the centrifugation step was repeated. The resulting supernatant was used to backfill a glass needle

prepared from borosilicate glass 3.5” capillaries (Drummond Scientific Co. 3-000-203-G/X)

pulled in a needle puller (Narishige PC-10). The filled needle was attached to a nanoinjector

(Drummond Scientific Co. Nonoject II). Second instar larvae on cornmeal food plates were

obtained following the same protocol as for encapsulation assay (see above). To obtain parasit-

ized larvae, 4 female wasps were added to food plates containing larvae for 3 hours before injec-

tion. Larvae from non-parasitized and parasitized plates were carefully moved onto filter paper

in groups of 10 and injected with 4.6nl of oil containing wasp extract. After injection, ddH2O

was added to the filter paper and larvae were moved with forceps into cornmeal food vials. Vials

were incubated for 48h at 25˚C. 3rd instar larvae were removed from food with 15% w/v sugar

solution and dissected in PBS droplets to score for the presence of melanized oil droplets and to

check that larvae exposed to the parasitoid contained a wasp egg or larva.

Hemocyte counts

Drosophila strains were allowed to lay eggs on agar plates overnight (from 6pm to 9am). Eggs

were collected in 1.5ml microcentrifuge tubes in 500μl PBS. 5μl of eggs in PBS (~40 eggs) were

transferred into cornmeal food vials and kept at 25˚C for 48h. At this time point, animals were

between 48 and 63 hours old. In these conditions, all strains used in this study were either in

late first instar stage or in early second instar stage. Three female wasps were added to treat-

ment vials. Controls were prepared in the same conditions without infection. 48h post-infec-

tion, larvae were removed from food with 15% w/v sugar solution, washed in ultrapure H20

and dried in filter paper. Groups of 10 to 12 larvae were rapidly bled from the ventral side in a

porcelain dissection dish; 1μl of hemolymph was removed and diluted in 9μl of neutral red

(1.65g/L PBS; Sigma-Aldrich N2889). 10μl of hemolymph dilution was transferred into a

Thoma counting chamber and hemocytes were counted in 1mm2 area, corresponding to 0.1μl

volume. Plasmatocytes and lamellocytes were distinguished by size and shape.

Phenoloxidase activity

Drosophila strains were allowed to lay eggs on agar plates overnight (from 6pm to 9am). Eggs

were collected in 1.5ml microcentrifuge tubes in PBS. 5μl of eggs in PBS (~40 eggs) were trans-

ferred into cornmeal food vials and kept at 25˚C for 72h. At this time point, animals were

between 72 and 87 hours old. In these conditions, all strains used in this study were either in

late second instar stage or in early third instar stage. The later time point for infection in this

experiment was necessary to obtain enough hemolymph from 24 hours post-infection larvae.
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Treatment vials were infected with 3 female wasps. Controls were prepared in the same condi-

tions without infection. 24 hours post-infection, groups of 20–25 larvae were washed with

ultrapure H2O, dried in filter paper and bled in a porcelain well dish. ~3.5μl of hemolymph

was immediately collected, frozen in liquid nitrogen and kept at -80˚C. To assay phenoloxidase

activity, 2μl of hemolymph was diluted in 18μl of PBS with protease inhibitor (Roche, complete

Tablets, Ref 04693159001) in a 96 well U bottom plate (Falcon, Ref 353077). 80μl of L-DOPA

(3,4-Dihydroxy-L-phenylanine, Sigma, Ref D9628, 20mM diluted in phosphate buffer pH 6.6)

was added to each sample and absorbance at 492nm recorded for 2 hours in 1min intervals in

a plate reader. Measurements between 80 and 90 min were averaged and used as a proxy of

phenoloxidase activity. Due to technical constraints, two plate readers were used in this study,

a CLARIOstar Plus (BMG LABTECH) and a SpectraMax iD3 (Molecular Devices).

Tep1 expression

Drosophila strains were allowed to lay eggs on agar plates overnight (from 6pm to 9am). Eggs

were collected in 1.5ml microcentrifuge tubes in PBS. 5μl of eggs in PBS (~40 eggs) were trans-

ferred into cornmeal food vials and kept at 25˚C for 48h. At this time point, animals were

between 48 and 63 hours old. In these conditions, all strains used in this study were either in

late first instar stage or in early second instar stage. 3 female wasps were added to treatment

vials for 3 hours. Control vials were prepared in the same conditions without wasps. All vials

were incubated at 25˚C for 24h. To analyze the expression of Tep1, RNA was extracted from

pools of 10 larvae collected with 15% w/v sugar solution, cleaned with ddH2O and dried in fil-

ter paper. Larvae were homogenized in 250μl TRIzol [Ambion 15596018] with ~10 1.0mm zir-

conia beads [Thistle Scientific] in a tissuelyser [Retsch MM300] and kept at -80˚C. For RNA

extraction, samples were defrosted and centrifuged for 10min at 4˚C at 12,000g. 160μl of

supernatant was transferred into 1.5ml microcentrifuge tubes, 62.5μl of chloroform [Fisher

Scientific C/4920/08] was added, tubes were shaken for 15s and incubated for 3min. After a

10min centrifugation at 12,000g at 4˚C, 66μl of the aqueous phase was transferred into a 1.5μl

microcentrifuge tube, 156μl of isopropanol [Honeywell 33539] added and the solution thor-

oughly mixed. After 10min incubation samples were centrifuged for 10min at 12,000g at 4˚C

and the supernatant was removed. RNA was washed with 250μl 70% ethanol, centrifuged for

2min at 12.000g at 4˚C. Ethanol was removed, samples dried, 20μl of nuclease free water

[Ambion AM9930] was added and samples incubated at 45˚C for 10min. cDNA was prepared

from RNA samples with GoScript reverse transcriptase (Promega) according to manufacture

instructions. cDNA was diluted 1:10. Exonic primers for D. melanogaster Tep1 were designed

in NCBI Primer-BLAST online tool: (Tep1_qPCR_1_Fw: 5’-ACTGGAAGCCTCATTGGT

CG-3’; Tep1_qPCR_1_Rev 5’-ACCGACAATGGGAACAGGAC-3’). The gene RpL32 was

used to normalize gene expression (RpL32_qPCR_F-d: 5’-TGCTAAGCTGTCGCACAA

ATGG-3’; RpL_qPCR_R-h 5’- TGCGCTTGTTCGATCCGTAAC-3’; [43]. Sensifast Hi-Rox

SyBr kit (Bioline) was used to perform the RT-qPCR on a StepOnePlus system (Thermo

Fisher). Each sample was duplicated (qPCR technical replica). The PCR cycle was 95˚C for

2min followed by 40 cycles of 95˚C for 5s, 60˚C for 30s. The log2 Tep1 expression estimated

with the formula Δct = -(ctTep1 –ctRpL32), where ct is cycle threshold.

Statistical analysis

Sample sizes for each experiment are listed in S1 Table. The hemocyte counts, gene expression

and PO activity were analyzed with Type II ANOVA. For these measurements, in the figures

we show the mean and standard error calculated from the raw data. The proportion data

(encapsulation rate, melanisation of oil droplets and proportion of lamellocytes) were analysed
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by logistic regression, allowing for over-dispersion using quasi-likelihoods and assessing sig-

nificance using Type II tests. For these measurements, in the figures we show estimate the

mean and standard error estimated as model coefficients back-transformed from logits to pro-

portions. In all models host genotype, parasitoid genotype and their interaction were included

as explanatory variables. The raw data and scripts to reproduce our figures and analysis are

available at the Cambridge Data Repository (https://doi.org/10.17863/CAM.44113)
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26. Carton Y, Poirié M, Nappi AJ. Insect immune resistance to parasitoids. Insect Sci. 2008; 15: 67–87.

https://doi.org/10.1111/j.1744-7917.2008.00188.x

27. Labrosse C, Eslin P, Doury G, Drezen JM, Poirié M. Haemocyte changes in D. Melanogaster in
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