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Abstract. In this paper, we examine the pseudo-spherical curves, which
are equivalent to each other under the conformal maps preserving a fixed
point in the de Sitter 2-space, by using the Clifford algebra Cls 1. Also,
we find the parametric equations of de Sitter loxodromes.
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1. Introduction

A 2-dimensional de Sitter space S? is a Lorentzian manifold analog, embedded
in Minkowski space M?1, of the Euclidean sphere. It is maximally symmet-
ric, has a positive constant curvature, and it corresponds to a one-sheeted
hyperboloid which is given by

82 = {(u1,uz,u3) € M>' s —ui +ud +uj =r°, r eR}

with the signature (—,+,+). The de Sitter space is named after Willem de
Sitter (1872-1934), professor of astronomy at Leiden University [6,17].

The de Sitter space has a physical importance in the view of relativity
theory. It is the vacuum solution of Einstein’s field equations with a positive
cosmological constant that exhibits maximal symmetry [18]. It was the first
interacting quantum field theory constructed on a curved space-time, the
so-called P (), model on the de Sitter 2-space [3]. Also, the problem of
localizability related to the quantum field theory was investigated in S? by
[20].

The (Clifford) geometric algebras are a type of associative algebras.
They are a powerful and practical framework for the representation and solu-
tion of geometrical problems. We can think of they as a structure generaliz-
ing the hypercomplex number systems such as the complex numbers, quater-
nions, split quaternions, double numbers. Geometric algebras have important
applications in a variety of fields including geometry, kinematics, theoreti-
cal physics and digital image processing. They are named after the English
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geometer William Kingdon Clifford. The most important Clifford algebras
are those over real and complex vector spaces equipped with nondegenerate
quadratic forms.

The Loxodromes, also known as a rhumb line, are a path on Earth, which
cuts all meridians of longitude at any constant angle. It is a straight line on
a Mercator projection map and can be drawn on such a map between any
two points on Earth without going off the edge of the map. The loxodromes
are not the shortest distance between two points on a sphere. Near the poles,
they are close to being logarithmic spirals (see [1,8,19]).

Encheva and Georgiev [7] studied some classes of curves on the shape
sphere by using a special conformal map between the two-dimensional sphere
and the extended plane. Babaarslan and Munteanu [2] examined the time-like
loxodromes on rotational surfaces in M?!.

The content of paper is as follows. We give some basic knowledges
about Clifford algebra Cls; and study the some properties of Lorentzian
plane curves in Cly ;. Using the powerful methods of Clifford algebra, we
find a special conformal transformation between a de Sitter 2-space and the
extended Minkowski plane such that we classify the pseudo-spherical curves
on de Sitter 2-space by means of this special conformal transformation. Also,
we examine de Sitter loxodromes which are the images of hyperbolic loga-
rithmic spirals under the inverse generalized stereoraphic projection.

2. Preliminaries

The Clifford algebra Cl,, 4, is an associative and distributive geometric alge-
bra generated by a pseudo-Euclidean vector space MP¢ equipped with a
quadratic form (). The algebra operation xy, called the geometric product,
for any x, y € MP? is defined by

xx = x% = Q (x),
Xy =X'y+xAy

where x -y and x Ay are inner product and outer product of MP¢ and

q pta
Q(x) =— g 2 + E z} for x = (1, ..., ¥p14) . We can express the inner
t=1 t=q+1

product and outer product in terms of the geometric product:

1
X~y:§(xy+yX)

1
XAy =3 (xy —yx).

In this paper, we shall deal with the Clifford algebra Cls 1 = gen {i, j, k}
defined by the geometric product rules

iZ=—landj*=k*>=1
ij=iANj=—ji,ik=iAk=—-ki and jk=jAk=—kj
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where {i, j, k} is the standard basis of Minkowski 3-vector space M?!. Letting
I :=ijk, any element of Cly 1, called a multivector or geometric number, has
the form

s+tl+x+ Iy,

where s,t € R and x = z1i 4+ zoj+xsk, y = il + yoj+ysk for x5,y € R,
[ =1,2,3. In other words, the multivectors in Cly; are linear combinations
of scalars (0-vector) s, vectors i, j, k (1-vector), bivectors (2-vector) ij, ik, jk
and trivector (3-vector) ijk. The nondivision algebra of split quaternions is
isomorphic with the even subalgebra Cl;r’ , of the Clifford algebra Cly ; where
C’lz1 has the basis {1, jk, ki, ij}. One can find more information about the
Clifford algebras in [10,11,15].

We can study the Minkowski 3-vector space M?! and Minkowski plane
M1 which is a sub-manifold of M*!, by means of the Clifford algebra Cls ;
by defining as the following

M3 = Ix = x1i + zoj+ask 2y, 20,23 € R} and
MU= {211 + 22 21,22 € R},

respectively. The vector x is called a spacelike vector, lightlike (or null) vector

and timelike vector if x> > 0 or x = 0, x2 = 0 or x? < 0, respectively. The

norm of the vector x is described by ||x|| = /|x?|. Also, the inverse of any

nonnull vector x can be defined in the Clifford algebra as the following
-1 X

The Lorentzian vector cross product x X y is given by

0§k
xxy=I(xAy)=det |21 z2 w3
U1 Y2 Y3

The equation /|w2| = a > 0 in M!! implies a four branched hyperbola
of hyperbolic radius a. The vector w = w1i + wsj can be written

w = =+a (icosh @ + jsinh §) = +aie’?
when w lies in the hyperbolic quadrants H-I or H-III, or
w = +a (isinh @ + jcosh ) = +aje’’

when w lies in the hyperbolic quadrants H-II or H-IV, respectively, where
J = ji. Each of the four hyperbolic branches is covered exactly once, in the
indicated directions, as the parameter § increases, —oo < < 0o (See Fig. 1).
The hyperbolic angle 0 is called argument of w and denoted by arg (w) = 6.

The hyperbolic angle can be defined by tanh ™" (ws/w; ) in the quadrants
H-I and H-III, or tanh™ ' (w; /w,) in H-II and H-IV, respectively.

The Lorentzian rotation in M1 can be expressed with a spinor, is a
linear combination of a scalar and a bivector. If we take any vector v =
v1i 4+ voj and B = uq + poJ, then the geometric product of v and B is equal
to
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FIGURE 1. 2-hyperbola

. . v
VB = (v + vap2) i+ (vipe +vapr)j = [m H2] [ 1} )
H2 H1| [V2

which is a vector in MU', When p; = cosh# and py = sinh@ , the spinor
has the form B = coshf + sinh#J = ¢/ and vB is a vector obtained by
rotation of v through 6. The geometric product of two spinor gives a new
spinor. Thus, the spinors form a subgroup of Cls ;.

The set of extended Minkowski plane M%! is the union of the sets M1
and I, given by

I = {(pi:l:pj)_1 ip ERU{OO}}.

We state the points in I, as the points at infinity. The set I, can be
considered as two lines at infinity that intersect at (0i + Oj)_l.
In M1, the equation of any pseudo-circle P can be written as

Aw? +2B-w+C =0 (1)
or ,
B B2 — AC
<W + A) = — (2)
2 _ _
where A, C € R BA# # 0 and B € MY, From here, TB is the centre

2 _
A2
circle in M5!, A pseudo-circle also contains point(s) at infinity. These points
in I, are given by

of the pseudo-circle and is the square of the radius of pseudo-
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A _
i) (pri+pu) " where py = { Fiins 1 T DA
if — bl = b2

oo
f—?—bzlf bl#bg

) (pai = paf) " whete pa = { 50 if by = by

where B = byi + byj and notice that (coi + 00j) ™" # (coi — 00j) ' IF A # 0,
the pseudo-circle contains definitely two points at infinity. But, if A is equal
to zero, then P is a line and only contains one point at infinity (see [9,13] for
double numbers). Also, P is a line if and only if (0i 4 0j) " € P.

Now, we examine a direct linear-fractional (or Mdébius) transformation
of MY, which are mappings T : MU MU defined by

T (w) = (iaw + b) (iew +d) i

respectively, where a, b, ¢, d € M"! and iad —bic # pitpj for p € R. In case
of iad — bic # pi + pj, the Mébius transformation maps all Minkowski plane
to a single point or the lines have slope £1. The set of these transformations
form a group under the operation of composition.

The linear fractional transformation is a composition of affine transfor-
mations w — iaw +b and multiplicative inversion w — 1/w. The conformal-
ity of this map can be confirmed by showing its components are all conformal.
Therefore, the linear fractional transformations are conformal and bijective
maps in MU Moreover, if we assume that a line is pseudo-circle which its
radius is infinite, this transformation maps a pseudo-circle to another pseudo-
circle. If the pseudo-circle (1) pass through the point ¢ ~tid, its image becomes
a line. The image of pseudo-circle under the linear-fractional transformation
17 =T (w) can be given by

(—Ad? — 2icd - B + Cc?)5? 4 2(Aibd + —iadiB + biciB — Caic) -1 (3)
—Ab? — 2iab - B—CaZ = 0.

3. Analysing of Lorentzian Plane Curves Via the Hyperbolic
Structure

We define the hyperbolic structure on the Lorentzian plane, which is essen-
tial implement in order to examine the differential geometry of curves. The
hyperbolic structure of M%! is the linear map J : M1 — M1 given by

JIx =xij = (z11 + x2)) ij = —xoil — x1j, for any x = 11 + xaj. (4)

This is equivalent to multiplying z(—1), rotating z counterclockwise by 90° in
the complex number plane and called complex structure of Euclidean plane.
It is easy to prove that the hyperbolic structure has the following properties

J? =1,
(jx) : (jy) = —XYy,
JIx-x =0,

Xy =x-y+ (xJy)ij (5)
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for x, y € MY! where I: MY — M1 is the identity linear map. Also, the

. . . . -1
matrix representation of the hyperbolic structure can be given by [01 0 } .

Therefore, we can state (4) via the matrix representation as

Ty T2 0 -1 |72 —T1
T2 T1 -1 0 o —T1 — X2 ’
In the rest of the paper, we will show the hyperbolic structure with 7.
Let’s consider a smooth and regular non-lightlike curve v : U — M1

Y(s) =7 (s)i+2(s)]
parameterized by arc length s, where U is a open interval in R. Let’s denote
by ¢ (s) the hyperbolic angle between the tangent vector at a point and the
positive direction. The curvature at a point measures the rate of bending as
the point moves along the curve with unit speed and can be defined as
dp
K(s) = —. 6
() = °F (6)
Lemma 1. Let v = v (t) parameterized by t be a nonnull curve and k be the
curvature of v. Then, we have
S (5. TA
oo c(-T9) 7

13
111
d
where § = d—z and e =1 or —1 if v is timelike or spacelike, respectively.

Proof. If v is a timelike curve, we have

d . .
tanh p = 92 _ E ¢ = tanh ™" (72) .

dvi A’ Y

Taking a derivative of the angle ¢ with respect to arc-length parameter s, we
get

= 2 22 - 57 3
ds =% VIEHHEL 42 +43)7

If + is a spacelike curve, we have

de (192 — f12) 1 (1192 — F192) (8)

coth ¢ = E, @ = coth™! ('y)
M 24!
and from here
de _ (92 = H172) 1 _ (%2 = H1de) . (9)
ds W= VISR B -5 43
Then, we can find the formula (7) by (8) and (9). O

Lemma 2. i) Let f,g: (t1,t2) — R be differentiable functions with —f? +
g% = 1. Fiz ty with t; < tg < ta and suppose Oy is such that f (to) =
sinh 0y and g (tg) = coshby. Then, there exists a unique function ¥ :
(t1,t2) — R such that
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9(to) =0,  f(t)=sinhd(t), g(t) = coshd (t) (10)

fOT t1 <t <ts.

ii) Let f,g: (t1,t2) — R be differentiable functions with —f? + ¢g> = —1.
Fiz ty with t1 < tg < to and suppose 0y is such that f (ty) = cosh by and
g (to) = sinhfy. Then, there exists a unique function ¥ : (t1,t2) — R
such that

9 (to) = bo, f(t) =coshd (t), g (t) = sinh 9 (¢)
forty <t <ts.

Proof. i) Let w = fi + gj such that w? = 1. If we define

to
then
A
T (Jwe ) =0
so that jwe™/? = ¢ for some constant c. Since w (ty) = je’%, it follows that

¢ = +1 and so we get (10). The uniqueness is trivial.
i1) The proof is similar to 7). O

Corollary 3. Let v and 3 be regular nonnull curves in M1 defined on the
same interval U and let to € U. Choose 0y such that

7' (to) - B’ (to) v (to) - TP (to)
v @)l 18" (to)l 1" @)l 18" (to)l

= sinh 90

= cosh 6y,

or

' (to) - B (to) 7' (o) - TB' (to)
v (to) Il 118" (to)l v )l 187 (to)l

Then there exist a unique differentiable function ¢ : I — R such that

V()-8 (1) Y O-T8W
EAGIIEAG] W o o)~ S @)

= sinh 6, = cosh 6.

9 (to) = o, = cosh ¥ (t),

or

v ()-8 () : v (t)-TB ()
9 (to) = B, — 2P Gihe), YR h (1)
o) =% e @ O framso g
In the Lemma 2, we can take f (t) = —sinh 9 (¢) and g (t) = — cosh ¥ (¢)
or f(t) = —coshd (t) and g (t) = —sinh 9 (¢) if f (t9) = — coshfp and g (tg) =
—sinh 6y or f (t9) = —sinh 6y and g (tg) = — cosh 6y, respectively. We call ¢
the hyperbolic angle function between v and 3 determined by 6.
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4. Conformal Curves in the de Sitter 2-Space

In this section, we investigate a map ¥ of 2-dimensional de Sitter subspace
of M?! defined by

83: {a€M2’1:a2:r2}

onto the extended Minkowski plane M1, Let’s choose the points A, =k,

A_ = —rkand Ag = —rj on Sf. The generalized stereographic projection
I': S2\A — MBI HL is defined by
2 2
M(a)=m= g TR 5k (e #£7),  (11)

a—rk:r—ag, r—as
for a = a1i + asj + ask, where
A={x=zii+2j+a3k €S’ 23 =r}and
Hy = {wi+yie MW —a? 9% = =7}
Also, the map T' is one to one, onto and a conformal map (see [12]).
So, we can extend the map I' to extended Minkowski plane with the map
o:82 — MY\ H} given by
o(a)=m for ae€ S?\A
{a (A) = I 12)
such that o (pi+ pj+rk) = (pi —I—pj)i1 and o (pi —pj+rk) = (pi —pjf1
for all p € RU {oo}. The inverse generalized stereographic projection o1 :
MEI\HL — 82 can be represented by

1 2r2m + rm2k rmkm
m m
2er? . 2yr?, —2r3 + rm?
= 51+ J 5J+ < 5 ) k,
m m m
o (I) = A

for m = zi + yj — rk from (12).
Let be N = {a =a1i+ asj+ ask € Sf tag = 77'} and choose the
linear-fractional transformation T}, : M1 — M1 defined by

Ty (W) = (—iuw + ru) (w +7j) i (13)

where u = ri+ 7j is a null vector. Then, we can establish a map ¥ =T 00 :
S? — ./\;11’1\7'(,%. The image of N under ¥ is in I,. The transformation W is
a bijective conformal map and maps Ag to (0i+0j)"", A, to @ = ri — rj
and A_ to u. The explicit expression of the map ¥ can be given by

a—r
~r(—ai+az+r) ras
- ag + 1 CL2+7‘J (a27£ T)a

for a € S?\N and ¥(N) = I..
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The inverse mapping U1 : ./\;ll’l\H}n — &2 can be given as the following
¥~ ! (n) = a=2r (iu — ni) (—iuk + u +n (ik +ij)) "' + 7k
2r2 (r —xz) N r(2r? + 2% = 2re — y?) , —2r?y
= i
2rx — x? + y? 2rx — x? + y? J 2rx — x? + y?

for n = xi+yj and ¥~! (I.) = N by using V"' = o 1o T L.

We can see that the map ¥ transforms the timelike pseudo-circle Py on
S2 given by v? = r? for v = a;i + asj € S? to the real axis of M!! using
(3), (11) and (13). Let © be a one-parameter family of the pseudo-circles P,
on S? tangent to Py at Ao such that the equations of the image of P; under
the generalized stereographic projection o in M1 are given by

(v+tj)>=(r—1t?  teR

The one-parameter family €2 is mapped onto a bunch of the horizontal lines
under Ty, using (2) and (3) in M1

Let 3 : I — 82 be a non-lightlike curve defined on an open interval
ICR.So,a=Vof3:I— MH\HL is a non-lightlike curve in the extended
Minkowski plane. We denote the group of the conformal transformations of
the de Sitter 2-space as Conf (S?) .

Lemma 4. Let 3; : I — 82, i = 1,2 be two non-lightlike curves and
a; = Vo [§; be corresponding curves in M“\'Hi. Then if fy : 82 — S?
is a bijection conformal map on 8? and fy (31) = Ba, then f = Vo fgoW™!
is a conformal map satisfies the equality f (a1) = ao. Furthermore, f is a
similarity if fu (N) = N.

Proof. Since ¥, fg and U~! are conformal, the transformation f is also a
conformal map and it can be written as

flar)=Wo fy oW () =V (3) = as.
Also, we can say that if a conformal transformation maps I, to I, in the

extended double plane, it is a similarity (see [4] for Euclidean plane). There-
fore, f is a similarity if we have fy (V) = N. O

Let G be a set of the transformations fy € Conf (Sf) preserving a
fixed point Q € §2. G is a subgroup of Conf (SE) . Moreover, we have a one-
parameter family €4 of pseudo-circles on S? with the same tangent line d,
where d C Lq (Sf) is a fixed tangent line passing through Q.

Theorem 5. Suppose that 3; : I — S? are two non-lightlike curves, which have
the same causal characters, of class C* defined on an open interval I C R,
(i =1,2) and there exist a finite subset @ C T = {t1,....,tx,} of I satisfying
the following conditions:

DB £Q  forte NT

2)Bi(t)=Q  for teT.

Let ¢;i(t) = £(Bi(t),P(t)), t € I\T, be the Lorentzian angle at the

point B; (t) ?etween Bi and the unique pseudo-circle C € Q4 passing through
Bi (), and ¢, = £ (51 (tm) , B2 (tm)) be the Lorentzian angle between 31 and
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B2 at the point B (tm) = P2 (tm) = Q for m = 1,...,k. Then, we have
fo € G satisfying fu (61) = B2 if and only if there is a constant ¢y such that
o satisfies the following conditions:

i) $1(t) = £¢2(t) + ¢o  for any t € INT
ii) Gm = o form=1,... k.

Proof. We can say that there is an orientation-preserving isometry R of S2

satisfying R (Q) = Ao and Q4 R Q such that the conditions fu € Conf (Sf)
and fy (Q) = Q are equivalent to the conditions R ~'o fyoR € Conf (Sf) and
(Ril ofgo R) (Q) = Q. Then, we may assume that Q = Ay and Q4 = Q
without loss of generality.

As we know that U is a conformal map and ¥ (P) is a horizontal line,
we can write

dal/dt
in P.
Firstly we consider that fg (61) = (2 for fg € G. We have that
f = Vo fy oV lis a similarity transformation and f (a;) = as. There-
fore, we get

dal/dt dag/dt

[|da /dt|| [[dava /dt||
for some fixed spinor B. Then, arg (da; /dt) = + arg (das/dt)+ ¢ or ¢ () =
+ (t) + ¢o, where B = ¢?0/. From here, ¢q is the angle of the hyperbolic
rotation which is a component of f and ¢, = ¢o for m =1, ..., k.
Now, assume that ¢ (t) = x¢2 (t) + ¢o, ¢o =const. for t € I\T and

q}m = ¢g for m =1,..., k. We consider «;, i = 1,2, as smooth regular curves.
From (6) we can write

dag || (K1 day

-Gl

doq (t doo (t
hlt) sttt |
where k; is the oriented curvature of ;. So, we can say that there is a transfor-

(14)

dt dt

mation g € Conf /\;1171\7'[71“) such that g (ovy) = . However, any conformal

transformation of double plane is either a composition of a Lorentzian motion
and an inversion or a similarity. Since the fact that g is not a similarity give
rise to a contradiction with the Eq. (14), we get fy = $"1ogo ¥ € G and
fo (B1) = B2. Tt is obvious when «; and «s are straight lines. O

5. De Sitter Loxodromes

In the Euclidean plane, the unique plane curves with the constant similarity
invariant k£ # 0 are logarithmic spirals defined by

s(t) = (ebt cost, e’ sin t)

so that they are the self-similar curves [7]. The tangent-radius angle of a loga-
rithmic spiral is a constant. Moreover, a spherical loxodrome is the pre-image
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under a stereographic projection of a logarithmic spiral in the Euclidean 3-
space [8]. In this section, we shall describe the pseudo-spherical loxodromes
on the de Sitter-2 Space.

The curves parameterized by

G1 (t) = (ae® cosht)i+ (ae’ sinht)j or < (t) = (ae’ sinht)i+ (ae® cosht)j
(15)
are self-similar curves with the constant similarity invariant &£ # 0 in the
Minkowski plane [16]. Therefore, we can say that the non-lightlike curves ¢
and ¢y are the hyperbolic logarithmic spirals of Minkowski plane.
Let v : I — M%Y! be a nonnull curve which does not pass through the
origin. There exists a unique differentiable function 7 : I — R from Lemma
2 such that

OOy gy, TOTIO
o @n ~ £t O FaRop = Eir® 19
OO o TOO

o on = 2O mrarmop - estr® 10

for t € I. 7 (t) presents the hyperbolic angle between the radius vector v ()
and the tangent vector 4/ (¢). It is called 7 (¢) the hyperbolic tangent-radius
angle of .
Lemma 6. v : I — M%Y! be a nonnull curve which does not pass through the
origin. The following conditions are equivalent:

i) The hyperbolic tangent-radius angle T is constant;

ii) v is a reparametrization of an hyperbolic logarithmic spiral.

Proof. Let’s v be a timelike curve. We can write v (t) = aie’/? and +/
(t) = (a'i + ab'j) e’? so that
v @l =a, 7 @] =+VI|-a?+ a6

Suppose that ¢) holds and let § be constant value of 7 (¢) . If there exists the
Eq. (16) for ~, then using the last equation of (5) , we have

7'y —a’ ad’ ..
I Oy O —a? +a20?]  /]—a’? + a267]
or
—a’ —ab’
coshd = S and sinhd = S
|—a’ + a207?] —a’ + a207|
so that
A
L _ ¢ cothd.
a

The solution of this differential equation is
a= Ce(coth 6)0

where c is a constant. From here, we can obtain

v (t) _ Cie(COth6+'])0(t).
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which implies that v is a reparametrization of the hyperbolic logarithmic

spiral. We can similarly follow the same operations for a spacelike curve.
One can easily find the hyperbolic logarithmic spiral defined by (15) has

a constant hyperbolic tangent-radius angle. O

A meridian on a de Sitter 2-space is branches of an hyperbola which is
obtained by the intersection of a plane contains Z-axis with S2. A de Sitter
lozodrome or de Sitter rhumb line is a curve on S? which meets each meridian
of the de Sitter 2-space at the same angle. Then, we use the generalized
stereographic projection in order to find the parametrization of a de Sitter
loxodrome.

Any pseudo-circle or line given by (1) in the extended Minkowski plane
can be given implicitly by an equation of the form

a(=2*+y°) +br+cy+d=0 (18)

where a, b, ¢, d are real constants. The Eq. (18) under o~ *

bX +¢cY + (ar —d/r) Z +ar® +d =0, (19)

is mapped into

which is the equation of a plane in M?!. This plane meets the de Sitter
2-space S? in a meridian. In case of a = d = 0 in the Eq. (18) , we get a
straight line passes through the origin. From (19) , the plane containing the
image curve also include the Z-axis. Thus, the image of a straight line passes
through the origin is a meridian on S2.

Lemma 7. A de Sitter loxodrome is the image of an hyperbolic logarithmic
spiral under the inverse generalized stereographic projection.

Proof. Lemma 6 implies that an hyperbolic logarithmic spiral meets every
line passes through the origin at the same hyperbolic angle. The inverse
generalized stereographic projection transforms each of these lines into a
meridian of the de Sitter 2-space. Since ¢! is a conformal map, it maps each
hyperbolic logarithmic spiral onto a de Sitter loxodrome. O

Using the Lemma 7, the parametrizations of de Sitter loxodromes are
given by

1
dloz; (t) = 07! (¢1) = 5

5o ((Zargebt cosht)i+ (2ar2ebt sinht) j
r? —aZe

+r (—a262bt — r2) k)
and
dl =o' ot
orz (t) =07 (@) = 72+ q2e2bt

+r (a262bt — 7’2) k) .

((2@7"26“ sinh¢)i + (2ar2ebt cosht) j
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