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On the Eigenvalues and Eigenvectors of a
Lorentzian Rotation Matrix by Using Split
Quaternions

Mustafa Özdemir, Melek Erdoğdu∗ and Hakan Şimşek

Abstract. In this paper, we examine eigenvalue problem of a rotation
matrix in Minkowski 3 space by using split quaternions. We express
the eigenvalues and the eigenvectors of a rotation matrix in term of
the coefficients of the corresponding unit timelike split quaternion. We
give the characterizations of eigenvalues (complex or real) of a rotation
matrix in Minkowski 3 space according to only first component of the
corresponding quaternion. Moreover, we find that the casual characters
of rotation axis depend only on first component of the corresponding
quaternion. Finally, we give the way to generate an orthogonal basis for
E3
1 by using eigenvectors of a rotation matrix.
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1. Introduction

Irish Mathematician Sir William Rowan Hamilton first described the quater-
nions in 1843. This description is a kind of extension complex numbers to
higher spatial dimensions. So the set of quaternions can be represented as

H = {q = q1 + q2i + q3j + q4k; q1, q2, q3, q4 ∈ R}
where

i2 = j2 = k2 = −1 and ijk = −1.
The set of quaternions is a member of noncommutative division algebra, [2].

In 1849, James Cockle introduced coquaternions, which can be represented
as

Ĥ = {q = q1 + q2i + q3j + q4k; q1, q2, q3, q4 ∈ R}.
Here, the imaginary units satisfy the relations

i2 = −1, j2 = k2 = 1 and ijk = 1.
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Due to the division of imaginary units into positive and negative terms, the
coquaternions came to be called split quaternions. The set of split quater-
nions is noncommutative, too. Contrary to quaternion algebra, the set of
split quaternions contains zero divisors, nilpotent elements and nontrivial
idempotents, [1], [3], [4], [5].
This paper is concerned with the eigenvalue problem of a rotation matrix in
Minkowski 3 space. We examine the eigenvalues and eigenvector of a 3×3 ro-
tation matrix by using unit timelike split quaternions for Minkowski 3 space.
We express the eigenvalues and the eigenvectors of a rotation matrix in term
of the coefficients of the corresponding quaternion. Also, we give the charac-
terizations of eigenvalues (complex or real) of a rotation matrix in Minkowski
3 space according to only first component of the corresponding unit timelike
quaternion. Moreover, we find that the casual character of rotation axis de-
pends only on first component of the corresponding unit timelike quaternion.
As a conclusion, we give a way to generate an orthogonal basis for E3

1 by
using eigenvectors of a rotation matrix.

2. Split Quaternions and Rotations in E3
1

The set of split quaternions can be represented as

Ĥ = {q = q1 + q2i + q3j + q4k; q1, q2, q3, q4 ∈ R}
where i2 = −1, j2 = k2 = 1 and ijk = 1.
We write any split quaternion in the form q = (q1, q2, q3, q4) = Sq +

−→
Vq where

Sq = q1 denotes the scalar part of q and
−→
Vq = q2i + q3j + q4k denotes vector

part of q. If Sq = 0 then q is called pure split quaternion and the set of pure
quaternions can be identified with Minkowski 3 space. Here, the Minkowski
3 space is Euclidean space with Lorentzian inner product

〈−→u ,−→v 〉L = −u1v1 + u2v2 + u3v3

where −→u = (u1, u2, u3), −→v = (v1, v2, v3) ∈ E3 and denoted by E3
1. And the

rotations in Minkowski 3 space can be stated with split quaternions such as
expressing the Euclidean rotations using quaternions, [4].
The conjugate of a split quaternion q = q1 + q2i + q3j + q4k ∈ Ĥ is denoted
by q and it is

q = Sq −−→Vq = q1 − q2i− q3j − q4k.

For p, q ∈ Ĥ, the sum and product of split quaternions p and q are

p + q = Sp + Sq +
−→
Vp +

−→
Vq,

pq = SpSq +
〈
�V p, �V q

〉
L

+ Sp
�V q + Sq

�V p + �V p ∧L
�V q,
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respectively. Here 〈 , 〉L and ∧L denote Lorentzian inner and vector product
and are defined as

〈−→u ,−→v 〉L = −u1v1 + u2v2 + u3v3,

−→u ∧L
−→v =

∣∣∣∣∣∣
−e1 e2 e3
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ ,
for vectors −→u = (u1, u2, u3) and −→v = (v1, v2, v3) of Minkowski 3 space,
respectively. The norm of split quaternion q is defined by

Nq =
√
|qq| =

√
|q21 + q22 − q23 − q24 |.

If Nq = 1 then q is called unit split quaternion and q0 = q/Nq is a unit split
quaternion for Nq �= 0. The product

Iq = qq = qq = q21 + q22 − q23 − q24

determines the character of a split quaternion. A split quaternion is spacelike,
timelike or lightlike (null) if Iq < 0, Iq > 0 or Iq = 0, respectively.
For further information, see [4] and [5].
The set of timelike split quaternions, which is denoted by

TĤ = {q = (q1, q2, q3, q4) : q1, q2, q3, q4 ∈ R, Iq > 0} ,

forms a group under the split quaternion product. Any timelike split quater-
nion can be represented in polar form similar to quaternions as follows:

i) Every timelike split quaternion with spacelike vector part can be written
in the form

q = Nq (cosh θ + �ε0 sinh θ)

where cosh θ = q1
Nq

, sinh θ =
√
−q22+q23+q24

Nq
, �ε0 = q2i+q3j+q4k√

−q22+q23+q24
is a space-

like unit vector in E3
1 and �ε0 ∗ �ε0 = 1,

ii) Every timelike split quaternion with timelike vector part can be written
in the form

q = Nq (cos θ + �ε0 sin θ)

where cos θ = q1
Nq

, sin θ =
√

q22−q23−q24
Nq

, �ε0 = q2i+q3j+q4k√
q22−q23−q24

is a timelike unit

vector in E3
1 and �ε0 ∗ �ε0 = −1.

The set of unit timelike split quaternions is denoted by

TĤ1 = {q = (q1, q2, q3, q4) : q1, q2, q3, q4 ∈ R, Iq > 0, Nq = 1} .

A matrix is called pseudo orthogonal if it preserves the length of vectors in
the Minkowski 3 space. That is, if 〈A−→u ,A−→u 〉L = 〈−→u ,−→u 〉L for all −→u ∈ E3

1.
Columns (or rows) of the a pseudo orthogonal matrix form an orthonormal
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basis of E3
1. Pseudo orthogonal matrices are also characterized by their in-

verses. A matrix A is an pseudo orthogonal if and only if I∗AT I∗ = A−1

where AT is transpose of the matrix A and

I∗ =

⎡
⎣ −1 0 0

0 1 0
0 0 1

⎤
⎦ .

So, A is a pseudo orthogonal matrix if and only if I∗AT I∗A = I. If we take
the determinant of both sides of this equation, we see that det (A) = ±1.
Any pseudo orthogonal matrix with determinant 1 is a Lorentzian rotation
matrix. The set of the Lorentzian rotation matrices of E3

1 can be expressed
as;

SO (1, 2) = {R ∈M3 (R) : RT I∗R = I∗, detR = 1}.
For any two vectors −→u , −→v ∈ E3

1, the matrix product notation uT I∗v and the
Lorentzian inner product notation 〈−→u ,−→v 〉L can be interchanged. Therefore,
we may write the equality

〈A−→u ,A−→v 〉L = (A−→u )t I∗A−→v = uTAT I∗Av = uT I∗v.

for any −→u , −→v ∈ E3
1. So, if we use the equality I∗AT I∗A = I, we have

〈A−→u ,A−→v 〉L = uT I∗v = 〈−→u ,−→v 〉L .

That is, the rotation matrices in the Minkowski 3 space preserve Lorentzian
inner product, angles and lenghts. Also, kind of rotation angle (spherical or
hyperbolic) and rotation axis change with respect to rotation matrix, [4].
We can generate a Lorentzian rotation matrix by a unit timelike split quater-
nion as follows:

R (q1, q2, q3, q4) =

⎡
⎢⎢⎢⎢⎣

q21+q22+q23+q24 2q1q4−2q2q3 −2q1q3−2q2q4

2q2q3+2q4q1 q21−q22−q23+q24 −2q3q4−2q2q1

2q2q4−2q3q1 2q2q1−2q3q4 q21−q22+q23−q24

⎤
⎥⎥⎥⎥⎦ .

(1)

For a given Lorentzian rotation matrix in E3
1, we can find a unit timelike split

quaternion corresponding to rotation matrix using the following formulas;

q21 =
1
4

(1 + R11 + R22 + R33) ,

q2 =
1

4q1
(R32 −R23) ,

q3 = − 1
4q1

(R13 + R31) ,

q4 =
1

4q1
(R21 + R12) ,
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for q1 �= 0. When, q1 = 0, we can find corresponding unit timelike quaternion
using the equations

q3 = − 1
2q2

R12,

q4 = − 1
2q2

R13,

q22 = 1 + q23 + q24 .

It is enough to determine the timelike quaternion since 0 < q21 + q22 − q23 − q24 .
When q1 = 0, we get 0 < q22 − q23 − q24 or q2 �= 0.
The function ϕ : S3

2 
 TĤ1→SO (1, 2) , which sends q = (q1, q2, q3, q4) to
the matrix R in equation 1, is a homomorphism of groups. The kernel of ϕ
is {±1}, so that the rotation matrix corresponds to the pair ±q of the unit
timelike quaternion. In particular, SO (1, 2) is isomorphic to the quotient
group TĤ1�{±1} from the first isomorphism theorem. In another words,
for every rotation in the Minkowski 3 space E3

1, there are two unit timelike
quaternions that determine this rotation. These timelike quaternions are q
and −q. So, for every rotation matrix, we can find only one unit timelike split
quaternion whose first component is positive, [4].
Also, the type of rotation is expressed by timelike quaternions with following
theorems;

Theorem 1. [4] Let q = cosh θ + �ε0 sinh θ be a unit timelike quaternion with
spacelike vector part and �ε0 be a Lorentzian vector. Then the transformation
R (q) is a rotation through hyperbolic angle 2θ about the spacelike axis �ε0.

Theorem 2. [4] Let q = cos θ + �ε0 sin θ be a unit timelike quaternion with
timelike vector part and �ε0 be a Lorentzian vector. Then the transformation
R (q) is a rotation through 2θ about the timelike axis �ε0.

3. Eigenvalues and Eigenvectors of A Rotation Matrix in E3
1

In this part, we examine the eigenvalues and eigenvectors of a Lorentzian
rotation matrix in E3

1. Let eigenvalues of the Lorentzian rotation matrix A
be λ1, λ2 and λ3. So, characteristic polynomial of the A is

�A (x) = det (xI −A) = (x− λ1) (x− λ2) (x− λ3) .

If we write x = 0, we find detA = λ1λ2λ3 = 1. It means that the product of
the eigenvalues of a rotation matrix is the determinant of this matrix.

Theorem 3. One of the eigenvalues of a 3× 3 rotation matrix in Minkowski
3 space is 1 and the corresponding eigenvector is the rotation axis.

Proof. Let A be a Lorentzian rotation matrix in E3
1. Characteristic polyno-

mial of the matrix A is ΔA(x) = det(xI −A). We can write

det(I −A) = detA det(I −A),
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since detA = 1. Using the properties of transpose and determinant, we obtain

det(I −A) = det(I∗AT I∗) det(I −A)

= det(I∗AT I∗ − I)

= det(I∗AI∗ − I)T

= det(A− I).

Besides, since A is a 3× 3 matrix, we have det(A− I) = − det(I −A). So,

det(A− I) = − det(A− I).

Thus, det(A− I) = 0 which means one of the roots of characteristic equation
of A is 1. Using the matrix given in equation 1, one can find the eigenvector
of R corresponding to the eigenvalue λ1 = 1 as

−→c1(q1, q2, q3, q4) =

⎡
⎣ q2

q3
q4

⎤
⎦ .

On the other hand, this vector is the rotation axis of R by theorems 1 and
2. Thus, we have proved the theorem. �

Theorem 4. Let A be a Lorentzian rotation matrix in E3
1. Then the followings

are satisfied;

i) If the rotation axis of A is timelike vector, then eigenvalues of A are
λ1 = 1, λ2 = eiθ = cos θ + i sin θ and λ3 = e−iθ = cos θ − i sin θ.

ii) If the rotation axis of A is spacelike vector, then eigenvalues of A are
λ1 = 1, λ2 = eθ = cosh θ + sinh θ and λ3 = e−θ = cosh θ − sinh θ.

Proof. Let A be a Lorentzian rotation matrix in E3
1. We will examine the

eigenvector of A is timelike or spacelike, separately.
i) Let −→u1 be a unit timelike vector such that A−→u1 = −→u1. Thus, unit

timelike vector −→u1 is the rotation axis of A by theorem 3. Take a unit
spacelike vector −→u2 perpendicular to −→u1, then −→u3 = −→u1 ∧L

−→u2 will be a
unit spacelike vector. Then {−→u1,

−→u2,
−→u3} is a right handed basis for E3

1.
Let {−→e1 ,−→e2 ,−→e3} be standard orthogonal basis of E3

1 and B be a matrix
such that B−→ei = −→ui . Then, B is a pseudo orthogonal matrix because its
columns are orthonormal basis for E3

1. We compute the matrix B−1AB.
We know that the product of two pseudo orthogonal matrices is pseudo
orthogonal and inverse of a pseudo orthogonal matrix is pseudo orthog-
onal. So, B−1AB is pseudo orthogonal. Moreover

B−1AB−→e1 = B−1A−→u1 = B−1−→u1 = −→e1 .
Therefore, the first column of B−1AB is −→e1 . The first column must be
orthogonal to other two columns. So, B−1AB will be in the following
form;

B−1AB =

⎡
⎣ 1 0 0

0 a c
0 b d

⎤
⎦ .
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Also, second and third column of B−1AB are orthogonal to each other.
That is, ac + bd = 0. On the other hand, determinant of B−1AB is 1.
Since detB−1AB = detA = ad−bc = 1. Here, we can take a = d = cos θ
and b = sin θ, c = − sin θ. That is, B−1AB is a Lorentzian rotation
matrix in the plane spanned by spacelike vectors −→e2 and −→e3 . So, we have

B−1AB =

⎡
⎣ 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦ .

We see that B−1AB is a Lorentzian rotation matrix in the plane
spanned by spacelike vectors −→e2 and −→e3 , about the axis −→e1 , by the an-
gle θ. Moreover, we can find that eigenvalues of B−1AB are λ1 = 1,
λ2 = eiθ = cos θ + i sin θ and λ3 = e−iθ = cos θ − i sin θ which are also
the eigenvalues of the Lorentzian rotation matrix A.

ii) Let −→u2 be a unit spacelike vector such that A−→u2 = −→u2. Thus, unit
spacelike vector −→u1 is the rotation axis of A by theorem 3. Take another
unit spacelike vector −→u3 perpendicular to −→u2, then −→u1 = −→u2 ∧L

−→u3 will be
a unit timelike vector. Then {−→u1,

−→u2,
−→u3} is a right handed basis for E3

1.
Let {−→e1 ,−→e2 ,−→e3} be standard orthogonal basis of E3

1 and B be a matrix
such that B−→ei = −→ui . Then, B is a pseudo orthogonal matrix because
its columns are orthonormal basis for E3

1. Then B−1AB is also pseudo
orthogonal. Moreover

B−1AB−→e2 = B−1A−→u2 = B−1−→u2 = −→e2 .
Therefore, the second column of B−1AB is −→e2 . The second column must
be orthogonal to other two columns. So, B−1AB will be in the following
form;

B−1AB =

⎡
⎣ a 0 c

0 1 0
b 0 d

⎤
⎦ .

Since B−1AB is also pseudo orthogonal, −ac+ bd = 0 and ad− bc = 1.
Here, we can take a = d = cosh θ and b = c = sinh θ. That is, B−1AB
is a Lorentzian rotation matrix in the plane spanned by timelike vector−→e1 and spacelike vector −→e3 . So, we have

B−1AB =

⎡
⎣ cosh θ 0 sinh θ

0 1 0
sinh θ 0 cosh θ

⎤
⎦ .

We see that B−1AB is a Lorentzian rotation matrix in the plane
spanned by timelike vector −→e1 and spacelike vector −→e3 , about the axis−→e2 , by the hyperbolic angle θ. Moreover, we can find that eigenvalues
of B−1AB are λ1 = 1, λ2 = eθ = cosh θ + sinh θ and λ3 = e−θ =
cosh θ− sinh θ which are also the eigenvalues of the Lorentzian rotation
matrix A. �

Theorem 5. Let A be a Lorentzian rotation matrix in E3
1. Then, characteristic

polynomial of the matrix A is x3 − tr (A)x2 + tr (A)x− 1. Further;
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i) Eigenvalues of the A are complex and rotation axis of A is timelike
vector if and only if −1 < tr(A) < 3,

ii) Eigenvalues of the A are real and rotation axis of A is spacelike vector
if and only if −1 ≥ tr(A) or tr(A) ≥ 3,

where tr(A) denotes the trace of the matrix A.

Proof. We know that the characteristic of a rotation matrix A in E3
1 is

P (x) = det(xI −A) = x3 − tr(A)x2 + Cx− 1

where C ∈ R. Since one of the roots of characteristic polynomial is 1, P (1) = 0
must be satisfied. Thus we obtain C = tr(A). So, the characteristic polyno-
mial of the matrix A is x3 − tr (A)x2 + tr (A)x − 1. If we factorize this
polynomial, we get

P (x) = (x− 1)(x2 + (1− tr(A)x + 1).

Therefore, other eigenvalues of A are the roots of the equation

x2 + (1− tr(A))x + 1 = 0.

The discriminant of this equation is found as

Δ = (1− tr(A))2 − 4 = (tr(A) + 1)(tr(A)− 3).

Δ < 0 if and only if −1 < tr(A) < 3. So, we find that eigenvalues of the
A are complex and rotation axis of A is timelike vector if and only if −1 <
tr(A) < 3. Δ ≥ 0 if and only if −1 ≥ tr(A) or tr(A) ≥ 3. Thus, we obtain
that eigenvalues of the A are real and rotation axis of A is spacelike vector if
and only if −1 ≥ tr(A) or tr(A) ≥ 3. �

Corollary 6. Let A be a Lorentzian rotation matrix in E3
1. The followings are

satisfied;

i) If rotation axis of A is a timelike vector, then the angle of rotation is θ

and cos θ =
1
2

(tr (A)− 1) ,

ii) If rotation axis of A is a spacelike vector, then angle of rotation is

hyperbolic θ and cosh θ =
1
2

(tr (A)− 1) .

Proof. If the rotation axis is a timelike vector, then the characteristic poly-
nomial of the rotation matrix A in E3

1 is

PA(λ) = (λ− 1)(λ− eiθ)(λ− e−iθ)

= λ3 − (1 + 2 cos θ)λ2 + (1 + 2 cos θ)λ− 1.

Similarly, we can find the characteristic polynomial of the rotation matrix A
in E3

1 as
PA(λ) = λ3 − (1 + 2 cosh θ)λ2 + (1 + 2 cosh θ)λ− 1

for the case the rotation axis is spacelike. Thus, using the previous theorem,

we find cos θ =
1
2
(tr(A)−1) or cosh θ =

1
2
(tr(A)−1) according to the casual

character of the rotation axis is timelike or spacelike, respectively. �
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Example 7. Let’s find the eigenvalues of the Lorentzian rotation matrix⎡
⎣ 9/4 −2 1/4

−1 1 −1
−7/4 2 1/4

⎤
⎦

in E3
1. Trace of this matrix is 9/4+1+1/4 = 7/2 > 3 then 2 cosh θ+1 = 7/2,

so cosh θ = 5/4 and sinh θ = 3/4. Thus, eigenvalues of the given matrix are

λ1 = 1,
λ2 = cosh θ + sinh θ = 2,

λ3 = cosh θ − sinh θ = 1/2.

Notice that these eigenvalues are real on the contrary to eigenvalues other
than 1 of a rotation matrices in the Euclidean 3 space is complex.

Example 8. Let’s find the eigenvalues of the rotation matrix⎡
⎣ 15/2 −5/2 −7

11/2 −5/2 −5
5 −1 −5

⎤
⎦

in E3
1. Trace of this matrix is 0 then 2 cos θ + 1 = 0 and cos θ = −1/2,

sin θ =
√

3/2. It means that the given represents a rotation by angle 2π/3.
So, the eigenvalues are

λ1 = 1,

λ2 = cos θ + i sin θ = −1/2 + i
√

3/2

λ3 = cos θ − i sin θ = −1/2− i
√

3/2.

Theorem 9. Let q = (q1, q2, q3, q4) be a unit timelike split quaternion, then
eigenvalues of the rotation matrix which is generated by q are

1,
(
|q1| −

√
q21 − 1

)2

and

(
|q1|+

√
q21 − 1

)2

.

That is, eigenvalues depends only the first component of the q.

Proof. Let R be the rotation matrix generated by unit timelike quaternion
q = (q1, q2, q3, q4). By considering equation 1, we find the eigenvalues of R as
follows;

λ1 = q21 + q22 − q23 − q24 ,

λ2 = q21 − q22 + q23 + q24 − 2
√

q21q
2
3 − q21q

2
2 + q21q

2
4 ,

λ3 = q21 − q22 + q23 + q24 + 2
√

q21q
2
3 − q21q

2
2 + q21q

2
4 .

Since, q is unit timelike quaternion, q21 + q22− q23− q24 = 1. Using this equality,
we obtain the eigenvalues as;

λ1 = 1, λ2 =
(
|q1| −

√
q21 − 1

)2

, λ3 =
(
|q1|+

√
q21 − 1

)2

. �
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Remark 10. Trace of the R given in equation 1 is 4q21−1. On the other hand,
characteristic polynomial of the R can be find as P (λ) = λ3 +λ2

(
1− 4q21

)
+

λ
(
4q21 − 1

)− 1 by using theorem 5. The rotation axis is timelike if and only
if

Δ =
(
4q21 − 2

)2 − 4 = 16q21
(
q21 − 1

)
< 0.

The rotation axis is spacelike if and only if

Δ =
(
4q21 − 2

)2 − 4 = 16q21
(
q21 − 1

) ≥ 0.

That is, the rotation axis is timelike if and only if q1 ∈ (−1, 0) ∪ (0, 1) and
otherwise, the rotation axis is spacelike. So, casual character of the rotation
axis of the rotation matrix R depends only first component of the unit time-
like split quaternion corresponding to R. In the case q1 = 0, the eigenvalues
of R are λ1 = 1, λ2 = λ3 = −1, and the eigenvectors corresponding to these
eigenvalues are;

−→u1(0, q2, q3, q4) =

⎡
⎣

q2
q3
q4

⎤
⎦ , −→c2(0, q2, q3, q4) =

⎡
⎣

q3
q2
0

⎤
⎦ , −→c3(0, q2, q3, q4) =

⎡
⎣

q4
0
q2

⎤
⎦ ,

respectively. Here, the rotation axis is a timelike vector, since 〈−→u1,
−→u1〉L =

−q22 + q23 + q24 = −1 < 0. Thus, the rotation axis is timelike if and only if
q1 ∈ (−1, 1) , the rotation axis is spacelike if and only if q1 ∈ R− {[−1, 1]}.
Theorem 11. For a rotation matrix R given in equation 1,

i) If q1 �= 0, then the eigenvectors of R other than rotation axis are null
vectors,

ii) If q1 = 0, then the eigenvectors of R other than rotation axis are space-
like vectors.

Proof. Let R be a rotation matrix given in equation 1.

i) Suppose q1 �= 0. We can find the eigenvectors of R with long and
tedious computations as follows:

−→c2 (q1, q2, q3, q4) =

⎡
⎢⎣

q21q2q4 + q3q1
(
q21 − 1

)− (q1q3 + q2q4)
√
q41 − q21

q21q3q4 + q2q1
(
q21 − 1

)− (q1q2 + q3q4)
√
q41 − q21(

q21 −
√
q41 − q21

) (
q22 − q23

)
⎤
⎥⎦
(2)

for the eigenvalue e−iθ (or e−θ) and

−→c3 (q1, q2, q3, q4) =

⎡
⎢⎣
−q21q2q4 − q3q1

(
q21 − 1

)− (q1q3 + q2q4)
√
q41 − q21

−q21q3q4 − q2q1
(
q21 − 1

)− (q1q2 + q3q4)
√
q41 − q21(

−q21 −
√

q41 − q21

) (
q22 − q23

)
⎤
⎥⎦
(3)

for the eigenvalue eiθ (or eθ). Therefore, one can prove that c2 and c3
are null vectors using the equality q21 + q22 − q23 − q24 = 1.
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ii) Suppose q1 = 0. By remark 10, the eigenvectors of R other than
rotation axis are

−→c2(0, q2, q3, q4) =

⎡
⎣ q3

q2
0

⎤
⎦ , −→c3(0, q2, q3, q4) =

⎡
⎣ q4

0
q2

⎤
⎦ .

Since 〈−→c2 ,−→c2〉L = −q23 + q22 = 1 + q24 > 0 and 〈−→c3 ,−→c3〉L = −q24 + q22 =
1 + q23 > 0, the eigenvectors of R other than rotation axis are spacelike
vectors. �

Example 12. Let’s find eigenvectors of the matrix

R (3, 0, 2, 2) =

⎡
⎣ 17 12 −12

12 9 −8
−12 −8 9

⎤
⎦ .

Using the above theorem, we find the eigenvectors

−→c2 (3, 0, 2, 2) =

⎡
⎣ −36

√
2 + 48

−24
√

2 + 36
24
√

2− 36

⎤
⎦ , −→c3 (3, 0, 2, 2) =

⎡
⎣ −36

√
2− 48

−24
√

2− 36
24
√

2 + 36

⎤
⎦

corresponding to the eigenvalues 17 − 12
√

2 and 12
√

2 + 17, respectively. If
we divide the vectors −→c2 and −→c3 by their third components, we find −→v2 =(√

2,−1, 1
)

and −→v3 =
(−√2,−1, 1

)
. Notice that the vectors −→v2 and −→v3 are

null vectors.

Remark 13. Since the eigenvectors other than rotation axis are null vectors
for the case q1 �= 0, eigenvectors of a rotation matrix does not form a basis
for three dimensional Minkowski 3 space. But using these eigenvectors we
can find an orthogonal basis for E3

1. Moreover, the eigenvectors other than
rotation axis are spacelike vectors in case q1 = 0. So, we may also find an
orthogonal basis for E3

1 by using the eigenvectors for the case q1 = 0.

Theorem 14. Let −→u1,
−→c2 and −→c3 be the eigenvectors of the a Lorentzian rotation

matrix R and the rotation axis −→u1 be a timelike vector. Then the following
are satisfied;

i) If q1 �= 0, then the real vectors,

−→u2 =
i

2
(−→c2 +−→c3) and −→u3 =

1
2

(−→c2 −−→c3)

are spacelike. Also, the vectors −→u1,
−→u2,

−→u3 are orthogonal to each other .
So, they form an orthogonal basis for E3

1 .
ii) If q1 = 0, then the real vectors,

−→u2 = −→c2 , −→u3 = −→c1 ∧L
−→c2 and −→v2 = −→c3 , −→v3 = −→c1 ∧L

−→c3
are spacelike. {−→u1,

−→u2,
−→u3} and {−→u1,

−→v2 , −→v3} are two different orthogo-
nal basis for E3

1 .

Proof. Suppose that −→u1,
−→c2 and −→c3 are the eigenvectors of the a Lorentzian

rotation matrix R and the rotation axis −→u1 is a timelike vector.
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i) Assume that q1 �= 0. According to the equalities 2 and 3, we get

−→u2 =

⎡
⎣
−i (q1q3 + q2q4)

√−q21 + q41
−i (q1q2 + q3q4)

√−q21 + q41
i
(
q23 − q22

)√
q41 − q21

⎤
⎦ and −→u3 =

⎡
⎣

q21q2q4 + q1q3
(
q21 − 1

)
q21q3q4 + q1q2

(
q21 − 1

)
q21

(
q22 − q23

)

⎤
⎦

where < −→u2,
−→u3 >L= 0. Moreover, if the rotation axis is timelike then

q1 ∈ (−1, 0) ∪ (0, 1). Therefore, from the equality

< −→u2,
−→u2 >L= q21

(
q21 − 1− q24

) (
q21 − 1

)
,

we get < −→u2,
−→u2 >L> 0. It means that −→u2 is a spacelike vector. Similarly,

one can find

< −→u3,
−→u3 >L= q21

(
q21 − 1− q24

) (
q21 − 1

)
.

That is, −→u3 is also a spacelike vector.
ii) This is the direct result of remark 10 and theorem 11. �

Example 15. Let’s take the rotation matrix generated by (1/2, 1, 1/2, 0) . So,

R (1/2, 1, 1/2, 0) =

⎡
⎣ 3/2 −1 −1/2

1 −1 −1
−1/2 1 −1/2

⎤
⎦ .

As q1 = 1/2, rotation axis is timelike vector −→u1 = (1, 1/2, 0) . Other eigenvec-
tors of this matrix are

−→c2 (1/2, 1, 1/2, 0) =

⎡
⎣ −3/16− i

√
3/16

−3/8− i
√

3/8
3/16− i3

√
3/16

⎤
⎦ ,

−→c3 (1/2, 1, 1/2, 0) =

⎡
⎣ 3/16− i

√
3/16

3/8− i
√

3/8
−3/16− i3

√
3/16

⎤
⎦ .

These vectors are null vectors. Therefore, we get the spacelike vectors

−→u2 =
i

2
(−→c2 +−→c3) =

⎡
⎣
√

3/16√
3/8

3
√

3/16

⎤
⎦ and −→u3 =

1
2

(−→c2 −−→c3) =

⎡
⎣ −3/16
−3/8
3/16

⎤
⎦ .

Thus, we obtain an orthogonal basis{
(1, 1/2, 0) ,

(√
3/16,

√
3/8, 3

√
3/16

)
, (−3/16,−3/8, 3/16)

}
for the Minkowski 3 space.

Theorem 16. Let −→u2,
−→c2 and −→c3 be the eigenvectors of the a Lorentzian rotation

matrix A and the rotation axis −→u2 be a spacelike vector.

i) If q21 − q24 > 1, then −→u1 =
1
2

(−→c2 +−→c3) is a timelike vector and −→u3 =
1
2

(−→c2 −−→c3) is a spacelike vector,
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ii) If q21 − q24 < 1, then −→u1 =
1
2

(−→c2 +−→c3) is a spacelike vector and −→u3 =
1
2

(−→c2 −−→c3) is a timelike vector.

For each case, the vectors −→u1,
−→u2 and −→u3 are orthogonal to each other. So,

they form an orthogonal basis for E3
1 .

Proof. According to the equalities 2 and 3, we get

−→u1 =

⎡
⎣
− (q1q3 + q2q4)

√
q21 (q

2
1 − 1)

− (q1q2 + q3q4)
√

q21 (q
2
1 − 1)

− (
q22 − q23

)√
q21 (q

2
1 − 1)

⎤
⎦ and −→u3 =

⎡
⎣

q21q2q4 + q1q3
(
q21 − 1

)
q21q3q4 + q1q2

(
q21 − 1

)
q21

(
q22 − q23

)

⎤
⎦ ,

where < −→u1,
−→u3 >L= 0. And we have the following equalities;

< −→u1,
−→u1 >L= −q21

(
q21 − 1− q24

) (
q21 − 1

)
,

< −→u3,
−→u3 >L= q21

(
q21 − 1− q24

) (
q21 − 1

)
.

Using q1 ∈ R− {[−1, 1]}, we have the following cases;

i) If q21 − q24 > 1, then < −→u1,
−→u1 >L< 0 and < −→u3,

−→u3 >L> 0. Thus −→u1 is a
timelike vector and −→u3 is a spacelike vector,

ii) If q21 − q24 < 1, then < −→u1,
−→u1 >L> 0 and < −→u3,

−→u3 >L< 0. Thus −→u1 is a
spacelike vector and −→u3 is a timelike vector.

Consequently, {−→u1,
−→u2,
−→u3} is an orthogonal basis for E3

1. �

Example 17. Let us find an orthogonal basis for E3
1 by using eigenvectors of

Lorentzian rotation matrix

R(5, 1, 4, 3) =

⎡
⎣ 51 22 −46

38 17 −34
−34 −14 31

⎤
⎦ .

Since q1 = 5 ∈ R− {[−1, 1]}, the rotation axis

−→u2(5, 1, 3, 4) =

⎡
⎣ 1

3
4

⎤
⎦

is spacelike. By using the proof of theorem 16, the other vectors are found as
follows;

−→u1(5, 1, 3, 4) =

⎡
⎣ −190

√
6

−170
√

6
80
√

6

⎤
⎦ , −→u3 =

⎡
⎣ 460

420
−200

⎤
⎦ .

It can be seen that these three vectors are orthogonal to each other. Since

〈−→u1,
−→u1〉L = −4800 < 0 and 〈−→u3,

−→u3〉L = 4800 > 0,
−→u1 is a timelike vector and −→u2 is a spacelike vector. This is a consequence of
theorem 16, because q21−q24 = 25−9 > 1. The set {−→u1,

−→u2,
−→u3} is an orthogonal

basis for E3
1.
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Example 18. Let us find an orthogonal basis for E3
1 by using eigenvectors of

Lorentzian rotation matrix obtained by unit timelike split quaternion q =
(5, 5, 0, 7).Since q1 = 5 ∈ R− {[−1, 1]}, the rotation axis

−→u2(5, 5, 0, 7) =

⎡
⎣ 5

0
7

⎤
⎦

is spacelike. We can find

−→u1(5, 5, 0, 7) =

⎡
⎣ −350

√
6

−250
√

6
−250

√
6

⎤
⎦ , −→u3(5, 5, 0, 7) =

⎡
⎣ 875

600
625

⎤
⎦

by proof of theorem 16. It can be seen that these three vectors are orthogonal
to each other. We have

〈−→u1,
−→u1〉L = 15000 > 0 and 〈−→u3,

−→u3〉L = −15000 > 0.

Thus, −→u1 is a spacelike vector and −→u2 is a timelike vector. This is also a result
of theorem 16, because q21 − q24 = 25 − 49 < 1. The set {−→u1,

−→u2,
−→u3} is an

orthogonal basis for E3
1.
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[4] M. Özdemir, A.A. Ergin, Rotations with unit timelike quaternions in Minkowski
3-space. Journal of Geometry and Physics 56 (2006), 322-336.
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