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Abstract: In this work, we propose an approach to better understand the effects of neuronal noise 
on neural communication systems. Here, we extend the fundamental Hodgkin-Huxley (HH) model 
by adding synaptic couplings to represent the statistical dependencies among different neurons 
under the effect of additional noise. We estimate directional information-theoretic quantities, such 
as the Transfer Entropy (TE), to infer the couplings between neurons under the effect of different 
noise levels. Based on our computational simulations, we demonstrate that these nonlinear systems 
can behave beyond our predictions and TE is an ideal tool to extract such dependencies from data. 
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1. Introduction 

Mathematical models and analysis have been a strong tool to answer many important questions 
in biology and the work of Hodgkin and Huxley on nerve conduction is one of the best examples of 
it [1]. In 1952, after many years of theoretical and experimental work of physiologists, a mathematical 
model was proposed by HH to explain the action potential generation of neurons using conductance 
models that are defined for different electrically excitable cells [2–4]. Despite the rapid growth in the 
number of analyses on the communication between neurons, the noise effect has generally been 
overlooked in the literature. Recently, neuronal noise effects have started to be incorporated into the 
models, due to a phenomenon, called “Stochastic Resonance” [5]. The communication between 
neurons is maintained by electrical signals, called ‘’Action Potentials (AP)”. If the action potentials, 
as a response to a stimulant, exceeds a certain threshold value, these signals are referred to as 
“Spikes”. The existence of a spike is determined by the value of a threshold value and additional 
noise component can easily increase or decrease the value of an AP versus the threshold, thus change 
the neural spike train code. Therefore, the noise is not merely a nuisance factor and it is capable of 
changing the meaning of the “neuronal code”. For this reason, to better understand how these 
changes can occur in a very complex system, such as our brain, we must first understand the 
underlying working principles of neuronal noise, which sets the framework of our investigations. 

Here, we utilize information theory to better understand the effects of neuronal noise on the 
overall communication. Therefore, we generalize the HH model in such a way that the noise can be 
added to the system beside the coupling among the neurons. In the literature, the effect of coupling 
among different neurons have been explored by using TE [6], however, to the best of our knowledge, 
the effects of noise on these interactions have not been fully considered yet. 

On the other hand, certain types of models have been suggested to include the noise in the HH 
model [7] without any coupling between the neurons. Here, we approach the complicated modeling 
problem by using a simplified version including two neurons, coupling between them, and 
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additional noise terms. We propose utilizing information theory to analyze the relationships in neural 
communication. 

In the literature, information-theoretic quantities, such as Entropy, Mutual Information (MI) and 
Transfer Entropy (TE) have been successfully utilized to analyze the statistical dependencies and 
relationships between random variables of highly complex systems [8]. Among these, MI is a 
symmetric quantity reporting the dependency between two variables, whereas TE, is an asymmetric 
quantity that can be used to infer the direction of the interaction (as affecting and affected variables) 
between them [9]. All the above quantities are calculated from observational data by inferring 
probability distributions. Despite the wide variety of different distribution estimation techniques, the 
whole procedure still suffers from adverse effects, such as the bias. Most common techniques in 
probability distribution estimation involve histograms [10], Parzen windows [11] and adaptive 
methods [12]. In the literature, histogram estimation is widely used due to its computational 
simplicity. To rely on estimations from data, reporting the statistical significance of each estimate [13] 
constitutes an important part of the methods. 

In this work, we propose utilizing TE to investigate the directional relationships between the 
coupled neurons of a HH model under noisy conditions. Therefore, we extend the traditional HH 
model and analyzed the effect of noise on the directional relationships between the coupled neurons. 
As our first approach to model noisy neuronal interaction, we demonstrate the effect under certain 
levels of noise power in the simulations. Based on these simulations, we observe that the original 
interactions are preserved despite many changes in the structure of the neuronal code structure. Our 
future work will be based on the generalization of this modeling to consider N neurons and the effect 
of noise on their interactions. 

2. Materials and Methods 

2.1. The Hodgkin-Huxley Model 

In this study we use Hodgkin-Huxley model which mimics the spiking behavior of the neurons 
recorded from the squid giant axon. This is the first mathematical model describing the action 
potential generation and it is one of the major breakthroughs of computational neuroscience [1]. In 
1952 two physiologists Hodgkin and Huxley got the Nobel prize after this work and after their work 
Hodgkin-Huxley type models are defined for many different electrically excitable cells such as 
cardiomyocytes [2], pancreatic beta cells [3] and hormone secretion [4]. They observed that cell 
membranes behave much like electrical circuits. The basic circuit elements are the phospholipid 
bilayer of the cell, which behaves like a capacitor that accumulates ionic charge while the electrical 
potential across the membrane changes. Moreover, resistors in a circuit are analogue to the ionic 
permeabilities of the membrane and the electrochemical driving forces are analogous to batteries 
driving the ionic currents. Na+, K+, Ca2+ and Cl− ions are responsible for almost all the electrical actions 
in the body. Thus, the electrical behavior of cells is based upon the transfer and storage of ions and 
Hodgkin and Huxley observed that K+ and Na+ ions are mainly responsible for the HH system. 

Mathematical description of the Hodgkin-Huxley model starts with the membrane potential V 
based on the conservation of electric charge defined as follows ܥ௠ ݐܸ݀݀ = ௜௢௡ܫ +  ௔௣௣   (1)ܫ

where ܥ௠ is the membrane capacitance, ܫ௔௣௣ is the applied current and ܫ௜௢௡ represents the sum of 
individual ionic currents and modeled according to Ohm’s Law: ܫ௜௢௡  =  −݃௄(V − ௄ܸ) − ݃ே௔(V − ேܸ௔) − ݃௅(V −  ௅ܸ). (2) 

here ݃௄, ݃ே௔ and ݃௅ are conductances, ேܸ௔, ௄ܸ, ௅ܸ are the reversal potentials associated with the 
currents. Hodgkin and Huxley observed that conductances are also voltage dependent. They realize 
that ݃௄ depends on four activation gates and defined as ݃௄ = ݃௄തതതത݊ସ whereas ݃ே௔ depends on three 
activation gates and one inactivation gate and modeled as ݃ே௔ = ݃ே௔തതതതത݉ଷℎ. In the HH model, ionic 
currents are defined as: 



Proceedings 2019, 33, 2 3 of 8 

 

ே௔ܫ = ݃ே௔തതതതത݉ଷℎ(V − ேܸ௔)   (3) ܫ௄ = ݃௄തതതത݊ସ(V − ௄ܸ)  (4) ܫ௅ = ݃௅തതത(V − ௅ܸ)      (5) 

with Na+ activation variable m and inactivation variable h, and K+ activation variable n. Here (. ̅ ) 
denotes maximal conductances. Activation and inactivation dynamics of the channels are changing 
according to the differential equations below. ݀݉݀ݐ = ݉ஶ( ௜ܸ) − ݉߬௠( ௜ܸ)      (6) 

݀ℎ݀ݐ = ℎஶ( ௜ܸ) − ℎ߬௛( ௜ܸ)    (7) 

ݐ݀݊݀ = ݊ஶ( ௜ܸ) − ݊߬௡( ௜ܸ)      (8) 

The steady state activation and inactivation functions together with time constants are defined 
as below and the transition rates ߙ௫ and ߚ௫ are given in Table 1. ݔஶ( ௜ܸ) = )௫ߙ ௜ܸ)ߙ௫(ܸ) +  ௫(ܸ)  (9)ߚ

  ߬௫( ௜ܸ) = )௫ߙ1 ௜ܸ) + )௫ߚ ௜ܸ) ݔ   , = ݉, ℎ, ݊   (10) 

Table 1. Transition rates and parameter values for the HH Model. 

Transition Rates (ms−1) 

௠ 0.1(40ߙ + ௜ܸ)/(1 − exp(−(55 + ௜ܸ)/10) ߚ௠ 4 exp(−(65 + ௜ܸ)/18) ߙ௛ 0.07 exp(−(65 + ௜ܸ)/20) ߚ௛ 1/(1 + exp(−(35 + ௜ܸ)) ߙ௡ 0.01(55 + ௜ܸ)/(1 − exp(−(10 + ௡ 0.125ߚ ((55 exp(−( ௜ܸ + 65)/80) 

Parameter Values 

 ܸ݉ ேܸ௔ 50 ܸ݉ ௄ܸ −77 ܸ݉ ௅ܸ −54.4 ܵߤ ௅ 0.3݃ ܵߤ ௄ 36݃ ܵߤ ே௔ 120݃ ܣ݉ ௔௣௣ 8ܫ ܨߤ ௠ 1ܥ

2.2. Information Theoretic Quantities 

In information theory, Shannon entropy is defined to be the average uncertainty for finding the 
system at a particular state ‘x’ out of a possible set of states ‘X’, where p(x) denotes the probability of 
that state. Also, it is used to quantify the amount of information needed to describe a dataset. Shannon 
entropy is given by the following formula ܪ(ܺ) = − ෍ ൯௫∈௑(ݔ)݌൫݃݋݈(ݔ)݌  (11) 

Mutual information (MI), is another fundamental information-theoretic quantity which is used 
to quantify the information shared between two datasets. Given two datasets denoted by X and Y, 
the MI can be written as follows: 
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,ܺ)ܫܯ ܻ) = ෍௫∈௑ ෍ ,ݔ)݌ ݃݋݈(ݕ ,ݔ)݌ ௬∈௒(ݕ)݌(ݔ)݌(ݕ  (11) 

The MI is a symmetric quantity and it can be rewritten as a sum and difference of Shannon 
entropies by ܫܯ(ܺ, ܻ) = (ܺ)ܪ + (ܻ)ܪ − ,ܺ)ܪ ܻ)  (12) 

where ܪ(ܺ, ܻ)  is the joint Shannon entropy. If there is a directional dependency between the 
variables, such as a cause and effect relationship, a symmetric measure cannot unveil the dependency 
information from data. In the literature, TE was proposed to analyze the directional dependencies 
between two Markov processes. To quantify the directional effect of a variable X on Y, the TE is 
defined by the conditional distribution of Y depending on the past samples of both processes versus 
the conditional distribution of that variable depending only on its own past values [14]. Thus, the 
asymmetry of TE helps us detect two directions of information flow. The TE definition in both 
directions (between variables X and Y) are given by the following equations: 

௑௒ܧܶ = ܶ൫ ௜ܻାଵห܇௜(௞), ௜(௟)൯܆ = ෍ ,௜ାଵݕ൫݌ ,௜(௞)ܡ ௜(௟)൯logଶܠ ,௜(௞)ܡ|௜ାଵݕ൫݌ ೔(೗)ܠ,೔(ೖ)ܡ,௜(௞)൯௬೔శభܡ|௜ାଵݕ൫݌௜(௟)൯ܠ     (13) 

௒௑ܧܶ = ܶ൫ ௜ܺାଵห܆௜(௞), ௜(௟)൯܇ = ෍ ,௜ାଵݔ൫݌ ,௜(௞)ܠ ௜(௟)൯logଶܡ ,௜(௞)ܠ|௜ାଵݔ൫݌ ೔(೗)ܡ,೔(ೖ)ܠ,௜(௞)൯௫೔శభܠ|௜ାଵݔ൫݌௜(௟)൯ܡ  (14) 

where ܠ௜(௞) = ൛ݔ௜ , … , ௜(௟)ܡ ௜ି௞ାଵൟ andݔ = ൛ݕ௜ , … ,  ௜ି௟ାଵൟ are past states, and X and Y are kth and lthݕ
order Markov processes, respectively, such that X depends on the k previous values and Y depends 
on the l previous values. In the literature, k and l are also known as the embedding dimensions. 

All the above quantities involve estimation of probability distributions from the observed data. 
Among many approaches in the literature, we utilize the histogram-based method to estimate the 
distributions on (14) and (15), due to its computational simplicity. In order to assess the statistical 
significance of the TE estimations, surrogate data testing is applied, and the p-values are reported. 

2.3. The Proposed Method 

In this paper we focus on the system of two coupled HH neurons with synaptic coupling from 
neuron 1 to neuron 2. Also, current noise is added with normal distribution for the action potential 
generation of the squid axons for this two-neuron network. It involves a fast sodium current ܫ௜,ே௔, a 
delayed rectifying potassium current ܫ௜,௄ and a leak current ܫ௜,௅  ቀmeasured in ఓ஺௖௠మቁ  for ݅ = 1,2. The 
differential equations for the rate of change of voltage for these neurons are given as follows, ܥ௠ ݀ ଵܸ݀ݐ = ௜,௔௣௣ܫ − ௜,ே௔ܫ − ௜,௄ܫ − ௜,௅ܫ + ܰ(0,  (15) ,(ߪ

௠ܥ ௗ௏మௗ௧ = ௜,௔௣௣ܫ − ௜,ே௔ܫ − ௜,௄ܫ − ௜,௅ܫ + ݇( ଶܸ − ଵܸ) + ܰ(0,  (16) ,(ߪ

where ଵܸ is the membrane voltage for the 1st neuron and ଶܸ is the membrane voltage for the 2nd 
neuron. Here, ܰ(0, ߪ shows the noise distribution defined by normal distribution with 0 mean and (ߪ  standart deviation. Synapting coupling is defined simply ܫ௦௬௡ = ݇( ଶܸ − ଵܸ)  with voltage 
difference and synaptic coupling strength is ݇. When k is between 0 and 0.25, spiking activity occurs 
with unique stable limit cycle solution. After k = 0.25 system turns back to stable steady state and 
spiking activity disappears. All other dynamics are same as described in Section 2.1. 

First, we propose using TE between ଶܸ and ଵܸ, in the case of no noise in (16) and (17). Secondly, 
we include the noise components in (16) and (17) and utilize TE between ଶܸ and ଵܸ , again. This 
comparison demonstrates the effects of noise on the information flow between the neurons. At a first 
glance on equations (16) and (17), we can conclude that the direction of the information flow under 
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noiseless case must be from ଵܸ to ଶܸ. However, when the noise is added, it is tedius to reach the same 
conclusion, as the added noise is capable of adding additional spikes and destroying the available 
ones. The simulation results in the next section demonsrate these findings and provides promising 
results to generalize our model to more complex neuronal interactions under noise. 

The model is implemented in the XPPAUT software [15] using the Euler method (dt = 0.1 ms). 

3. Results 

Information Flow Changes with Coupling Strength and Noise Level 

Here, we first studied a system of two globally coupled HH model through a synapse by varying 
the coupling strength k, without noise effect. Phase dynamics for our system for two different k 
coupling strengths are plotted in Figure 1. Here we define two different coupling patterns as shown 
below. In Figure 1a, neuron 2 fires once after neuron 1 fires twice which we call 2-to-1 coupling with 
k = 0.1. For a larger coupling coefficient (k = 0.2) neurons shows different synchronous firing pattern 
as in Figure 1b. This time, each firing of neuron 2 follows that of neuron 1 which we call 1-to-1 
coupling. 

 
(a) (b) 

Figure 1. Sample spike patterns for two different network configurations: (a) 2 to 1 coupling and (b) 
1 to 1 coupling. 

To better understand the effects of noise on our network,we use zero mean Gaussian distributed 
random variables with standard deviation of ߪ . When we incorporate this noise with different 
variances into our model as illustrated in (16) and (17), we observe a change in the synchronisation 
of the neurons. Additionally, the obvious patterns disappear totally for larger noise amounts as 
shown in Figure 2 for each coupled network. Noise can change the synchronization of neurons by 
inducing or deleting spikes in network. Since the noise plays an important role in changing the 
dynamics of the network, we need a mechanism to figure out this newly changed patterns under 
noise effect to explain the behavior of the neuronal network. Therefore, we utilize TE to extract this 
pattern using the observed voltage data. 
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Figure 2. Noise changes the synchronization of the network. 

To better understand the information flow between the neurons, we estimate TE between the 
action potentials of two neurons, as described in Section 2.2, using (16) and (17), with an increasing 
noise intensity. The results are plotted in Figure 3 for both 2-to-1 coupled system and 1-to-1 coupled 
system. As expected for the network without noise (0 = ߪ), transfer entropy value is the highest for 
both systems. This verifies the changes caused in Neuron 2 by Neuron 1. 

To see the effects of noise, we explore the TE between the neurons with increasing ߪ parameter. 
From Figure 3, we note that with the increasing noise intensity, the values of TE decrease. Although 
this can be expected, it is of utmost importance to emphasize the case when we do not have any noise. 
If we do not have noise component in the model, according to Figure 3 and Table 2, we notice that 
TE value is behaving in opposite way, i.e., the smaller TE, the higher coupling. Another interesting 
finding is the varying pattern in TE around low ߪ values: The TE increases first and keeps decreasing 
later. This unexpected result shows that we cannot easily predict the direction of coupling without 
TE analysis, as the synaptic couplings are nonlinear in nature. 

Table 2. Transfer entropy values with different noise intensity as ߪ  is increasing. ࣌ ૙ ૙. ૞ ૚ ૛ ૜ ૞ ૟ ૠ ૡ ૢ ૚૙ 
K = 0.1 0.0665 0.017 0.0168 0.0169 0.0129 0.0059 0.0039 0.0014 0.0013 0.000806 0.000512 
K = 0.2 0.0557 0.0264 0.0206 0.0261 0.0242 0.0165 0.0148 0.0095 0.0064 0.0054 0.0033 
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Figure 3. Transfer entropy results for 2-to-1 and 1-to-1 coupled HH network. 

4. Discussion and Conclusions 

We study information flow for the coupled network of two neurons under two different 
coupling states and increasing noise levels, where the neuron models and the synaptic interactions 
are derived from Hodgkin-Huxley model. Here we propose our model in such a way that we can 
generate 2-to-1 coupling and 1-to-1 coupling between the neurons. In order to find these relationships 
from data we propose a TE based approach and analyze the effects of couplings under various noise 
intensities, successfully. These results help us better understand the interaction between the neurons 
in real biological systems. This work is of particular importance to explore larger networks with more 
complex noisy interactions. 
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