Basit öğe kaydını göster

dc.contributor.authorArash Rad, Paniz
dc.contributor.authorSharafi Laleh, Shayan
dc.contributor.authorRabet, Shayan
dc.contributor.authorYari, Mortaza
dc.contributor.authorSoltani, Saeed
dc.contributor.authorRosen, Marc A.
dc.date.accessioned2025-11-18T09:21:28Z
dc.date.available2025-11-18T09:21:28Z
dc.date.issued2025-03-23
dc.identifier.citationArashrad, P., Sharafi Laleh, S., Rabet, S., Yari, M., Soltani, S., & Rosen, M. A. (2025). Real-time modeling of a solar-driven power plant with green hydrogen, electricity, and fresh water production: Techno-economics and optimization. Sustainability, 17(8), 3555.en_US
dc.identifier.issn2071-1050
dc.identifier.urihttp://hdl.handle.net/20.500.12566/2353
dc.description.abstractSolar energy is important for the future as it provides a clean, renewable source of electricity that can help combat climate change by reducing reliance on fossil fuels via implementing various solar-based energy systems. In this study, a unique configuration for a parabolic-trough-based solar system is presented that allows energy storage for periods of time with insufficient solar radiation. This model, based on extensive analysis in MATLAB utilizing real-time weather data, demonstrates promising results with strong practical applicability. An organic Rankine cycle with a regenerative configuration is applied to produce electricity, which is further utilized for hydrogen generation. A proton exchange membrane electrolysis (PEME) unit converts electricity to hydrogen, a clean and versatile energy carrier since the electricity is solar based. To harness the maximum value from this system, additional energy during peak times is used to produce clean water utilizing a reverse osmosis (RO) desalination unit. The system’s performance is examined by conducting a case study for the city of Antalya, Turkey, to attest to the unit’s credibility and performance. This system is also optimized via the Grey Wolf multi-objective algorithm from energy, exergy, and techno-economic perspectives. For the optimization scenario performed, the energy and exergy efficiencies of the system and the levelized cost of products are found to be approximately 26.5%, 28.5%, and 0.106 $/kWh, respectively.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherSustainabilityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHydrogen productionen_US
dc.subjectHidrojen üretimitr_TR
dc.subjectParabolic trough solar collectoren_US
dc.subjectParabolik oluklu güneş kollektörütr_TR
dc.subjectProton exchange membrane electrolysisen_US
dc.subjectProton değişim membran elektrolizitr_TR
dc.subjectRenewable energyen_US
dc.subjectYenilenebilir enerjitr_TR
dc.subjectThermal energy storageen_US
dc.subjectTermal enerji depolamatr_TR
dc.titleReal-Time modeling of a solar-driven power plant with green hydrogen, electricity, and fresh water production: Techno-Economics and optimizationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.scopus2-s2.0-105003652163
dc.identifier.volume17
dc.identifier.issue8
dc.contributor.orcid0000-0002-9862-0253 [Soltani, Saeed]
dc.contributor.abuauthorSoltani, Saeed
dc.contributor.ScopusAuthorID56379837900 [Soltani, Saeed]
dc.identifier.doi10.3390/su17083555


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster