dc.contributor.author | Sengelen Sevim, Esra | |
dc.contributor.author | Shen, Zhongmin | |
dc.contributor.author | Ülgen, Semail | |
dc.date.accessioned | 2025-04-08T10:11:40Z | |
dc.date.available | 2025-04-08T10:11:40Z | |
dc.date.issued | 2023-06-12 | |
dc.identifier.citation | Sengelen Sevim, E., Shen, Z. & Ülgen, S. (2023).On strongly ricci-quadratic finsler metrics.The Journal of Geometric Analysis, 33(326),1-11. | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.12566/2164 | |
dc.description.abstract | Finsler metrics being Ricci-quadratic is a non-Riemannian condition since the Ricci curvature (tensor) is always Ricci-quadratic for Riemannian metrics. In this paper, we introduce the notion of strongly Ricci-quadratic Finsler metrics. We classify strongly Ricci-quadratic Randers metrics expressed in a navigation form. | en_US |
dc.description.sponsorship | No sponsor | en_US |
dc.language.iso | eng | en_US |
dc.publisher | The Journal of Geometric Analysis | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Sprays | en_US |
dc.subject | sprey | tr_TR |
dc.subject | Finsler metric | en_US |
dc.subject | Ricci curvature tensor | en_US |
dc.subject | Ricci eğrilik tensörü | tr_TR |
dc.subject | Ricci-quadratic | en_US |
dc.subject | Ricci-kuadratik | tr_TR |
dc.subject | Randers metric | en_US |
dc.subject | Randers metriği | tr_TR |
dc.title | On ricci-quadratic finsler metrics | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.relation.publicationcategory | International publication | en_US |
dc.contributor.orcid | 0000-0003-1381-1577 [Ülgen, Semail] | |
dc.contributor.abuauthor | Ülgen, Semail | |
dc.contributor.abuauthor | Finsler metriği | tr_TR |
dc.contributor.yokid | 19314 [Ülgen, Semail] | |